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Abstract

We consider a nearly unstable, or near unit root, AR(1) process with regularly varying
innovations. Two different approximations for the stationary distribution of such
processes exist: a Gaussian approximation arising from the nearly unstable nature of the
process and a heavy-tail approximation related to the tail asymptotics of the innovations.
We combine these two approximations to obtain a new uniform approximation that is
valid on the entire real line. As a corollary, we obtain a precise description of the regions
where each of the Gaussian and heavy-tail approximations should be used.
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1. Introduction

First-order autoregressive processes are found in a variety of settings, ranging from the
biological and natural sciences to financial and insurance applications. The analysis of such
processes has long been a topic of great interest in the time series community, where considerable
literature exists about the asymptotic properties of estimators for the regression parameter
and the corresponding hypothesis tests. From an applications perspective, one often seeks
conditions that would allow simple approximations for the distribution of these processes. We
consider two such conditions here: a regime that allows us to obtain a Gaussian approximation
and a condition on the distribution of the innovations that provides asymptotics for the extreme
tail distribution.

When the regression parameter is close to one, the first-order autoregressive process is known
as a nearly unstable (nonstationary) AR(1) process, sometimes also referred to as a process with
near unit root. Similar to the study of queues in heavy traffic, this asymptotic regime can be
used to derive approximations for the distribution of the process. One such approximation, due
to Cumberland and Sykes [11], states that the distribution of the nearly unstable AR(1) process
{Zn : n ≥ 0}, given by Zn+1 = ρZn + ξn+1, Z0 = z, Z0 = z and |ρ| close to 1, can be
approximated by an Ornstein–Uhlenbeck process, provided that E[ξ1] = 0, σ 2 = E[ξ2

1 ], and
E[ξ4

1 ] < ∞. This result suggests the following approximation for its steady-state distribution:

Z∞
d≈ σ√

2(1 − ρ)
Z, (1.1)

where Z is a standard normal random variable.
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A different set of results on general autoregressive processes (not only the AR(1) process)
considers the special case where the innovations (ξi : i ≥ 0) belong to some kind of heavy-tail
distribution (e.g. regularly varying). Typically, in the presence of heavy tails, it is possible
to obtain asymptotic expressions for the tail distribution of sums of random variables. Such
asymptotics are often tractable even in the more general setting of autoregressive processes,
and a considerable amount of literature exists in this context (see the comments at the end of
Section 2). Here we consider the case where the innovations belong to a regularly varying
distribution with index α > 2, for which the following asymptotic is known to hold for 0 <
ρ < 1:

P(Z∞ > x) ∼ P(ξ1 > x)

∞∑
n=0

ραn = (1 − ρα)−1 P(ξ1 > x), x → ∞ (1.2)

(see [16, Lemma A.3] for a more general result).
Both approximations (1.1) and (1.2) apply to the model we consider here, the nearly unstable

AR(1) process with regularly varying innovations. Nonetheless, the two are very different
in nature, with the former providing approximations for moderate values of the tail and the
latter for values in the extreme tail. The main result we present gives an approximation
that is uniformly good on the entire real line, making it unnecessary to determine for each
value of x which approximation is appropriate. Moreover, we can easily determine from
our uniform approximation the exact point at which the behavior of Z∞ transitions from the
Gaussian approximation into the heavy-tail asymptotic, giving a precise notion of where each
of approximations (1.1) and (1.2) are valid.

The author has been informed through personal communication that a similar paper by José
Blanchet is in preparation. This paper discusses the more general AR(k) model and will provide
higher-order terms for the region where the Gaussian approximation is valid.

2. Main results

We consider a first-order autoregressive process of the form

Zn+1 = ρZn + ξn+1, Z0 = z, (2.1)

where (ξi : i ≥ 0) is a sequence of mean 0 independent and identically distributed random
variables having distribution F , and z ∈ R. It is well known that, provided |ρ| < 1, the process
(Zn : n ≥ 0) possesses a stationary distribution. In particular, by iterating (2.1) we obtain

Zn = ρnz+
n−1∑
i=0

ρiξn−i ,

from which it follows that if Z∞ is a stationary version of the process then

Z∞
d=

∞∑
i=0

ρiξi,

where ‘
d=’ denotes equality in distribution. When ρ is close to 1, the process is said to be nearly

unstable (nonstationary), and in this setting the distribution of the process can be analyzed by
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using a continuous time-scaled version of the process. Define (Ym(t) : t ≥ 0) according to
Ym(0) = 0,

Ym

(
i

m

)
=

(
1 − 1

m

)
Ym

(
i − 1

m

)
+ ξi√

m
, i = 1, 2, . . . ,

Ym(t) = Ym

(
i

m

)
for

i

m
≤ t <

i + 1

m
.

By setting ρ = 1 − 1/m and Zn = √
mYm(n/m), we can recover the discrete-time process

Zn = ρZn−1 + ξn, Z0 = 0.

It was proven in [11] that if E[ξ1] = 0, E[ξ2
1 ] = σ 2, and E[ξ4

1 ] < ∞, then, as m → ∞, Ym(t)
converges in distribution to Y (t), where Y (t) is a zero-mean Ornstein–Uhlenbeck process
satisfying Y (0) = 0, and

dY (t) = −Y (t) dt + σ dB(t).

This result suggests the approximation

P(Z∞ > x) ≈ P((1 − ρ)−1/2Y (∞) > x) = 1 −�

(
x
√

2(1 − ρ)

σ

)
, (2.2)

where �(t) = ∫ t
−∞ φ(u) du is the standard normal distribution function. This same approx-

imation for Z∞ can alternatively be derived via Lindeberg’s theorem (see [3, p. 357]). This
nearly unstable AR(1) process has received considerable attention since the mid 1970s, both
in the time series literature as well as the econometrics literature (see, for example, [6], [10],
[24], and the references therein).

When the innovations (ξi : i ≥ 1) are heavy tailed, say regularly varying, then a different
kind of approximation is available for the tail distribution of Z∞. In particular, under the
so-called balance condition

F̄ (t) = pt−αL(t) and F(−t) ∼ qt−αL(t) as t → ∞ (2.3)

for some p ∈ (0, 1] and q = 1 −p (by f (t) ∼ g(t) we mean that limt→∞ f (t)/g(t) = 1), we
can obtain the asymptotic equivalence when 0 < ρ < 1:

P(Z∞ > x) ∼ F̄ (x)

∞∑
n=0

ραn, x → ∞. (2.4)

More generally, if we consider a weighted infinite series of the form Y = ∑∞
i=0 ψiξi , when the

innovations are regularly varying with index α > 0, the following asymptotic is known to hold
under certain conditions on the coefficients (ψi : i ≥ 0):

P(Y > x) ∼ P(|ξ1| > x)

∞∑
i=0

[p(ψ+
i )

α + q(ψ−
i )

α], x → ∞. (2.5)

Early results in this direction are attributed to Cline [8], [9] (for the case 0 < α ≤ 1) and can be
found in [21, p. 226]. Best possible conditions on the coefficients are given in [16], where in
particular we find that, when α > 2 and E[ξ1] = 0, (2.5) holds provided that

∑∞
i=0 ψ

2
i < ∞.
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We refer the reader to [15] for a more complete compilation of results related to sums, series,
and products of regularly varying functions, and to [4] for a thorough treatment of regularly
varying functions and their properties.

In terms of the nearly unstable AR(1) process we are considering here, both (2.2) and (2.4)
provide approximations for the tail distribution of Z∞. Clearly, as a function of x, the normal
approximation predicts a tail that decreases superexponentially as x → ∞ (since 1 −�(t) ∼
φ(t)/t), while the heavy-tailed asymptotic predicts a regularly varying tail. This apparent
inconsistency can be explained by observing that the regions for which each approximation
is valid are not the same; the normal approximation is known to be good for values of x of
order (1 − ρ)−1/2, while the heavy-tailed asymptotic refers to values of x in the extreme tail
(x 
 (1 − ρ)−1/2). To give us a better idea of where the transition between the two different
behaviors occurs, we can solve (approximately) for the value of x for which (2.2) and (2.4) are
equal, that is,

−x
2(1 − ρ)

σ 2 − log[x(1 − ρ)−1/2] ≈ −α log x + logL(x)+ log((1 − ρ)−1).

It follows from here that the solution x∗(ρ) to this equation satisfies

x∗(ρ) ∼ κ(1 − ρ)−1/2|log(1 − ρ)|1/2

as ρ ↗ 1, where κ = σ
√
(α − 2)/2. This heuristic analysis can be done rigorously, and

Theorem 2.1, below, gives a precise statement of our result. Similar results in the context of the
M/G/1 queue were obtained in [19] and [18]. A careful analysis of the probability P(Z∞ > x)

for values of x close to this threshold allows us to provide an approximation that is uniform
across all values of x, from where we can determine the exact regions over which each of the
two approximations holds.

In the statements of the theorems given below and throughout the rest of the paper, we always
assume the following.

Assumption 2.1. (Xi : i ≥ 0) is a sequence of independent and identically distributed random
variables with common distribution F , where F satisfies the balance condition (2.3) with
α > 2 and L(·) is a slowly varying function. Furthermore, we assume that E[X1] = 0 and set
σ 2 = E[X2

1].
Given the relationZ∞

d=∑∞
n=0 ρ

nXn, we can consider directly the seriesY∞ = ∑∞
n=0 ρ

nXn
in the statements of the results.

Theorem 2.1. Let Y∞ = ∑∞
n=0 ρ

nXn. Then, as ρ ↗ 1,

sup
x∈R

∣∣∣∣ P(Y∞ > x)

�(−x√1 − ρ2/σ)+ 1(x ≥ (1 − ρ)−1/2)(1 − ρα)−1F̄ (x)
− 1

∣∣∣∣ → 0.

Remark 2.1. Using Lemma 3.3 of [19], we can prove that the same asymptotic holds uniformly
for 0 < ρ < 1 as x → ∞.

As a consequence of the uniform limit, we can obtain a very precise description of the
threshold at which the behavior of Y∞ transitions from the normal approximation into the
heavy-tailed asymptotic.
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Corollary 2.1. Define z(ρ) = κ(1 − ρ)−1/2|log(1 − ρ)|1/2, where κ = σ
√
(α − 2)/2. Then

the following assertions hold.

(a) For any c < 1, as ρ ↗ 1,

sup
x≤cz(ρ)

∣∣∣∣ P(Y∞ > x)

�(−x√1 − ρ2/σ)
− 1

∣∣∣∣ → 0. (2.6)

Furthermore, if c = 1, (2.6) holds provided that sup0≤t≤x L(t)/(log x)(α−1)/2 → 0.

(b) For any c > 1, as ρ ↗ 1,

sup
x≥cz(ρ)

∣∣∣∣ P(Y∞ > x)

(1 − ρα)−1F̄ (x)
− 1

∣∣∣∣ → 0. (2.7)

Furthermore, if c = 1, (2.7) holds provided that inf t≥x L(t)/(log x)(α−1)/2 → ∞.

The main idea of the proof of Theorem 2.1 is to decompose Y∞ into two pieces, the first one
with a finite number of summands and the second one corresponding to the tail of the infinite
series. The analysis of the finite sum YK = ∑K

n=0 ρ
nXn can be done following the same

lines as the analysis of the random walk with heavy-tailed increments (see [5] for an extensive
study of such results, including the partial sums with nonidentically distributed increments). In
particular, the style of the proofs we give for the region where both the normal approximation
and the heavy-tailed asymptotic play a role, resembles in spirit the work done by Rozovskiı̌ [23]
in the random walk setting.

Theorems 2.2 and 2.3, below, give the asymptotic behavior of the partial sums YK for
moderate and large values of x, respectively. The results we present below for the partial sums
are of potential interest in their own right, which is why the thresholds are given in terms of
a quantity related to the variance of YK (note that var(YK) = σ 2SK(ρ)). The condition that
K → ∞ in Theorem 2.2 is the minimum condition to guarantee that SK(ρ) → ∞, and,
therefore, a necessary condition for the partial sums to converge in distribution to a normal
limit.

Theorem 2.2. Let YK = ∑K
n=0 ρ

nXn and SK(ρ) = ∑K
n=0 ρ

2n, where K → ∞ as ρ ↗ 1.
Then

sup
x∈D(ρ,K)

∣∣∣∣ P(YK > x)

�(−x/σ√
SK(ρ))+ 1(x ≥ SK(ρ)1/2)F̄ (x)

∑K
n=0 ρ

αn
− 1

∣∣∣∣ → 0

as ρ ↗ 1, where D(ρ,K) = {x : x ≤ SK(ρ)
1/2(log SK(ρ))1/2 log log SK(ρ)}.

When we consider values of x that belong to the heavy-tail domain, the condition that
K → ∞ becomes unnecessary. Moreover, not only can we obtain asymptotics for the
distribution of the partial sum YK , but also for its maximum ȲK = max0≤m≤K Ym. We can
also easily add a nonrandom term to Ym, say of the form ρm+1z, which allows us to make the
connection with the first-passage time distribution of the original AR(1) process.

Define τ(x) = inf{n ≥ 0 : Zn > x}. Then, for any z ∈ R,

Pz(τ (x) ≤ K) = Pz
(

max
0≤n≤K Zn > x

)
= P(ȲK > x).
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There is a considerable literature on the distribution and the expectation of such passage times in
the context of both autoregressive processes and their continuous-time counterpart, Ornstein–
Uhlenbeck processes. Related papers on the first passage time of the AR(1) process are [17]
and [2], where an exponential martingale approach and integral equations are used to derive
expressions for the distribution of τ(x) and its expectation. Although we do not pursue this idea
here, it is possible that a truncated version of the exponential martingale considered in those
papers can provide approximations for the distribution/expectation of τ(x) that are good in the
region of moderate deviations. The result we give below is readily applicable in the region of
large deviations of YK .

Theorem 2.3. Let Ym = ρm+1z+ ∑m
n=0 ρ

nXn and ȲK = max0≤m≤K Ym, where z ∈ R is
fixed. Define SK(ρ) = ∑K

n=0 ρ
2n. Then, for any K ≥ 0,

sup
x∈C(ρ,K)

∣∣∣∣ P(YK > x)

F̄ (x)
∑K
n=0 ρ

αn
− 1

∣∣∣∣ → 0

and

sup
x∈C(ρ,K)

∣∣∣∣ P(ȲK > x)

F̄ (x)
∑K
n=0 ρ

αn
− 1

∣∣∣∣ → 0

asρ ↗ 1, whereC(ρ,K) = {x : x ≥ SK(ρ)
1/2(log SK(ρ))1/2ν(ρ)} and ν(ρ) → ∞ asρ ↗ 1.

We end this section with a list of related results in the context of autoregressive processes
with heavy tails. The distribution of the maximum term of an autoregressive process with
innovations that are either exponential or regularly varying was studied in [13], where the
first passage times of such processes were also discussed. The extremes of moving average
processes with innovations belonging to the domain of max-attraction of the Gumbel distribution
(lighter than regularly varying) were studied in [12] and [22]. The stationarity/transience of
autoregressive processes with super-heavy-tailed innovations was studied in [25]. In [16] a
negative drift random walk with dependent step sizes given by a two-sided linear process with
regularly varying innovations was considered, and, as part of their analysis, close to minimal
conditions under which (2.5) holds were derived, including the case in which α ≥ 1. First- and
second-order asymptotics for infinite weighted sums with regularly varying tails were given
in [1], and generalizations to more general subexponential distributions were given in [14].
Finally, partial weighted sums and their maxima, where the increments belong to a large family
of subexponential distributions, were considered in [7].

The rest of the paper contains the proofs of the results in this section. The main proofs are
contained in Section 3, and some of the more technical lemmas are contained in Appendix A.

3. Proofs

In this section we give the proofs of Theorems 2.1, 2.2, and 2.3. The proof of Corollary 2.1
is a direct consequence of Theorem 2.1 and Lemma 3.1, given below, so its proof is omitted.
The section starts with the proofs of Theorems 2.3 and 2.2, which correspond to the analysis
of the large and moderate deviations of the partial sums YK = ∑K

n=0 ρ
nXn.

We start by pointing out that the statement of Theorem 2.3 is a special case of a more general
theorem from [5], so instead of giving a full proof we just need to show that the conditions for
that theorem are satisfied.
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Proof of Theorem 2.3. Write Ym = ρm+1z+ ∑m
n=0 ρ

nXn and ȲK = max0≤m≤K Ym, where
z ∈ R is fixed. Let Zm = ∑m

n=0 ρ
nXn, Z̄K = max0≤m≤K Zm,

V (t) = 1

K + 1

K∑
n=0

F̄ (ρ−nt), V0(t) = F̄ (t), H(K + 1) =
K∑
n=0

ραn.

The proof will follow once we show that the conditions of Theorem 13.2.1 of [5] are satisfied.
In order to understand the notation used in [5], we need to introduce some definitions. We say
that condition [ ·,=]UR holds if the functions V , V0, and H defined above satisfy

lim
K→∞, t→∞

KV (t)

H(K)V0(t)
= 1.

(To obtain this definition, we refer the reader to [5, p. 81] for the definition of [ ·,=] and to [5,
p. 492] for the definition of [UR]). Note that, by Lemma A.1 in Appendix A,

lim
t→∞ sup

0<ρ<1
sup
K≥0

∣∣∣∣ (K + 1)V (t)

H(K + 1)V0(t)
− 1

∣∣∣∣ = lim
t→∞ sup

0<ρ<1
sup
K≥0

∣∣∣∣
∑K
n=0 F̄ (ρ

−nt)
F̄ (t)

∑K
n=0 ρ

αn
− 1

∣∣∣∣ = 0,

so condition [ · ,=]UR is satisfied. Also,

DK+1 :=
K∑
n=0

E[(ρnXn)2] = σ 2
K∑
n=0

ρ2n = σ 2SK(ρ);

so, by Theorem 13.2.1 of [5],

sup
x∈C(ρ,K)

∣∣∣∣ P(Z̄K > x)∑K
n=0 F̄ (ρ

−nx)
− 1

∣∣∣∣ → 0, sup
x∈C(ρ,K)

∣∣∣∣ P(ZK > x)∑K
n=0 F̄ (ρ

−nx)
− 1

∣∣∣∣ → 0, (3.1)

as ρ ↗ 1, where C(ρ,K) = {x : x ≥ SK(ρ)
1/2(log SK(ρ))1/2ν(ρ)} for any ν(ρ) → ∞ as

ρ ↗ 1. By Lemma A.1 again we can substitute
∑K
n=0 F̄ (ρ

−nx) by F̄ (x)
∑K
n=0 ρ

αn in (3.1).
To incorporate the term ρm+1z into the result, just note that

P(ȲK > x) ≤ P(|z| + Z̄K > x) = F̄ (x − |z|)
K∑
n=0

ραn(1 + o(1))

and

P(YK > x) ≥ P(−|z| + ZK > x) = F̄ (x + |z|)
K∑
n=0

ραn(1 + o(1)).

Since z is fixed and x → ∞ for x ∈ C(ρ,K), the statement of the theorem follows.

The main idea behind the proof of Theorem 2.2 is to split the probability P(YK > x) into
two pieces, i.e.

P(YK > x) = P
(
YK > x, max

0≤n≤K ρ
nXn ≤ y

)
+ P

(
YK > x, max

0≤n≤K ρ
nXn > y

)
(3.2)

for some carefully chosen y. Since the innovations {Xi} are heavy tailed, the second term will
give rise to the heavy-tailed limit (2.4), while the first term corresponds to the normal limit
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predicted by the Ornstein–Uhlenbeck approximation (2.2). The main technical difficulty lies
in the analysis of the first term, for which an exponential change of measure, giving rise to
complex asymptotics, is needed. The more technical parts of this analysis are contained in
Appendix A.

Before proceeding to the proof of Theorem 2.2 we give two results describing how the sum
of the truncated innovations is approximated by the normal distribution, and a third result that
will simplify the analysis of (3.2). Proposition 3.1, below, gives the behavior of the first term
in (3.2) for tail values larger than the natural range of the normal approximation, that is, larger
than O(SK(ρ)1/2). The idea of the proof is to perform an exponential change of measure
(since the truncated innovations have finite moment generating function), and to analyze the
expression obtained. Proposition 3.2, below, gives this same approximation for tail values of
order SK(ρ)1/2. Finally, Proposition 3.3, below, provides an expression for P(YK > x) that
will greatly simplify the proof of Theorem 2.2.

Proposition 3.1. Let YK,n = YK−ρnXn, SK(ρ) = ∑K
n=0 ρ

2n, and y = y(ρ,K) = SK(ρ)
1/2,

where K → ∞ as ρ ↗ 1. Also, define

B(ρ,K) = {x : SK(ρ)1/2 ≤ x ≤ SK(ρ)
1/2(log SK(ρ))

1/2 log log SK(ρ)}.
Then, for all 0 ≤ n ≤ K and any 0 < γ < (α − 2) ∧ 1,

P
(
YK,n > u, max

0≤j≤K, j =n ρ
jXj ≤ y

)
=

(
1 −�

(
u

σ
√
SK(ρ)

))
(1 + o(y−γ ))

as ρ ↗ 1 and uniformly for u ∈ B(ρ,K).
Proof. Let I (K, n) = {0 ≤ i ≤ K : i = n}, W(y)

i = ρiXi | ρiXi ≤ y, and Y (y)K,n =∑
i∈I (K,n) W

(y)
i . Then

P
(
YK,n > u, max

i∈I (K,n) ρ
iXi ≤ y

)
= P(Y (y)K,n > u)

∏
i∈I (K,n)

F (ρ−iy).

Define �i,y(θ) = log E[eθW(y)
i ], Fi,y(x) = P(W(y)

i ≤ x) = F(ρ−i (x ∧ y))/F (ρ−iy), and
Fθ,i,y(dx) = eθx−�i,y(θ)Fi,y(dx). Note that

P(Y (y)K,n > u)

=
∫

· · ·
∫
R

F0,y(dw0) · · ·FK,y(dwK)

= exp

( ∑
i∈(K,n)

�i,y(θ)

) ∫
· · ·

∫
R

exp

(
−

∑
i∈I (K,n)

θwi

)
Fθ,0,y(dw0) · · ·Fθ,K,y(dwK)

= exp

(
−θu+

∑
i∈I (K,n)

�i,y(θ)

)
E[e−θ(Ỹ (y)K,n−u)1(Ỹ (y)K,n > u)],

where R = {(w0, . . . , wK) : ∑
i∈I (K,n) wi > u}, Ỹ (y)K,n = ∑

i∈I (K,n) Vi , and {Vn : n ≥ 0} are

independent random variables with P(Vi ≤ z) = Fθ,i,y(z). Define θ̂ = θ̂ (ρ,K, u, n) to be the
solution of the equation

−u+
∑

i∈I (K,n)
�′
i,y(θ̂ ) = 0.
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Choose 2 + γ < β < α ∧ 3. By Lemma A.3,

θ̂ = u

σ 2SK(ρ)
+ o

((
u

SK(ρ)

)β−1)
= u

σ 2SK(ρ)
+ o(u−1y−γ ) (3.3)

uniformly for u ∈ B(ρ,K). By Lemma A.4,

exp

( ∑
i∈I (K,n)

�i,y(θ̂ )

) ∏
i∈I (K,n)

F (ρ−iy) = exp

(
u2

2σ 2SK(ρ)
+ o(y−(β−2))

)
.

Combining these two expressions we obtain

P
(
YK,n > u, max

0≤j≤K, j =n ρ
jXj ≤ y

)

= exp

(
− u2

2σ 2SK(ρ)
+ o(y−γ )

)
E[e−θ̂ (Ỹ (y)K,n−u)1(Ỹ (y)K,n > u)].

To analyze the remaining expectation, note that

E[Vi] = E[W(y)
i eθ̂W

(y)
i ] 1

E[eθ̂W(y)
i ]

= �′
i,y(θ̂ ),

so our choice of θ̂ gives
E[Ỹ (y)K,n] =

∑
i∈I (K,n)

�′
i,y(θ̂ ) = u.

Define V̂i = Vi − E[Vi], BK = ∑
i∈I (K,n) E[V̂ 2

i ], UK = B
−1/2
K

∑
i∈I (K,n) V̂i , and GK(u) =

P(UK ≤ u). Let γ < δ < (α − 2) ∧ 1. Then, by a generalization of Esseen’s inequality
(see [20, Theorem 5.6, p. 151]),

sup
u

|GK(u)−�(u)| ≤ C

B
1+δ/2
K

∑
i∈I (K,n)

E[|V̂i |2+δ] (3.4)

for some constant C > 0. Therefore,

E[e−θ̂ (Ỹ (y)K,n−u)1(Ỹ (y)K,n > u)]
= E[e−θ̂B1/2

K UK1(UK > 0)]
=

∫ ∞

0
e−θ̂B1/2

K tGK(dt)

= −GK(0)+ θ̂B
1/2
K

∫ ∞

0
e−θ̂B1/2

K tGK(t) dt

= −�(0)+ θ̂B
1/2
K

∫ ∞

0
e−θ̂B1/2

K t�(t) dt + E(ρ,K, u, n),

where φ(t) = e−t2/2/
√

2π , �(t) = ∫ t
−∞ φ(s) ds, and

E(ρ,K, u, n) = (�(0)−GK(0))+
∫ ∞

0
e−s

(
GK

(
s

θ̂B
1/2
K

)
−�

(
s

θ̂B
1/2
K

))
ds.
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By Lemma A.4,

E[V̂ 2
i ] = ρ2iσ 2 + o(ρiβy−(β−2)), E[|V̂i |2+δ] = O(eθ̂yρ(2+δ)i),

which gives

BK =
∑

i∈I (K,n)
(ρ2iσ 2 + o(ρiβy−(β−2))) = σ 2SK(ρ)− σ 2ρ2n + o(SK(ρ)y

−(β−2)). (3.5)

Combining (3.5) with (3.4) yields

|E(ρ,K, u, n)| ≤ C

B
1+δ/2
K

∑
i∈I (K,n)

E[|V̂i |2+δ]

= O

(
eθ̂y

SK(ρ)1+δ/2
K∑
i=0

ρ(2+δ)i
)

= O(eθ̂yy−δ).

Finally, straightforward computation gives

−�(0)+ θ̂B
1/2
K

∫ ∞

0
e−θ̂B1/2

K t�(t) dt =
∫ ∞

0
e−θ̂B1/2

K tφ(t) dt

= eθ̂
2BK/2

∫ ∞

0

1√
2π

e−(t+θ̂B1/2
K )2/2 dt

= eθ̂
2BK/2

∫ ∞

θ̂B
1/2
K

1√
2π

e−w2/2 dw

= eθ̂
2BK/2�(−θ̂B1/2

K ).

Combining (3.3) and (3.5) gives

θ̂B
1/2
K =

(
u

σ 2SK(ρ)

)
σSK(ρ)

1/2
(

1 + o

((
u

SK(ρ)

)β−2))
(1 +O(SK(ρ)

−1))

= u

σSK(ρ)1/2
+ o

(
uβ−1

SK(ρ)β−3/2

)
,

from which we also obtain

θ̂2BK

2
= u2

2σ 2SK(ρ)
+ o

(
uβ

SK(ρ)β−1

)
= u2

2σ 2SK(ρ)
+ o(y−γ ).

Let z = u/
√
σ 2SK(ρ). Then

E[e−θ̂ (Ỹ (y)K,n−u)1(Ỹ (y)K,n > u)]
= eθ̂

2BK/2�(−θ̂B1/2
K )+O(eθ̂yy−δ)

= ez
2/2+o(y−γ )�(−z+ o(zβ−1y2−β))+O(eθ̂yy−δ)

= ez
2/2+o(y−γ )(�(−z)+ o(zβ−1y2−βφ(z)))+O(eθ̂yy−δ)

= ez
2/2+o(y−γ )�(−z)

(
1 + o

(
φ(z)zβy2−β

z�(−z)
)

+O

(
φ(z)eθ̂yzy−δ

z�(−z)
))
.
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Since, for u ∈ B(ρ,K), we have c1 ≤ z ≤ c2(log y)1/2 log log y for some constants c1, c2 > 0
and z�(−z) ∼ φ(z) as z → ∞, then

E[e−θ̂ (Ỹ (y)K,n−u)1(Ỹ (y)K,n > u)] = ez
2/2+o(y−γ )�(−z)(1 + o(zβy2−β)+O(eθ̂yzy−δ)).

Also, since yθ̂ = O((log y)1/2 log log y), then both zβ and eθ̂yz are bounded by slowly varying
functions of y, and the facts that β − 2 > γ and δ > γ give

E[e−θ̂ (Ỹ (y)K,n−u)1(Ỹ (y)K,n > u)] = ez
2/2+o(y−γ )�(−z)(1 + o(y−γ )).

We conclude that

P
(
YK,n > u, max

0≤j≤K, j =n ρ
jXj ≤ y

)
= (1 −�(z))(1 + o(y−γ )),

which completes the proof.

Proposition 3.2. Let YK,n = YK−ρnXn, SK(ρ) = ∑K
n=0 ρ

2n, and y = y(ρ,K) = SK(ρ)
1/2,

where K → ∞ as ρ ↗ 1. Also, define

A(ρ,K) = {x : x ≤ SK(ρ)
1/2}.

Then, for all 0 ≤ n ≤ K and any 0 < γ < (α − 2) ∧ 1,

P
(
YK,n > u, max

0≤j≤K, j =n ρ
jXj ≤ y

)
=

(
1 −�

(
u

σ
√
SK(ρ)

))
(1 + o(y−γ ))

as ρ ↗ 1, uniformly for u ∈ A(ρ,K).
Proof. We start by writing

P
(
YK,n > u, max

0≤j≤K, j =n ρ
jXj ≤ y

)

= P(YK,n > u)− P
(
YK,n > u, max

0≤j≤K, j =n ρ
jXj > y

)

= P(YK,n > u)+O
(

P
(

max
0≤j≤K, j =n ρ

jXj > y
))
.

To analyze the second term, note that

P
(

max
0≤j≤K, j =n ρ

jXj > y
)

≤ P

( K⋃
i=0

{ρiXi > y}
)

≤
K∑
i=0

F̄ (ρ−iy)

= O

(
F̄ (y)

K∑
j=0

ραj
)

= O(y2F̄ (y)), (3.6)

where the second equality is justified by Lemma A.1. Now, to analyze P(YK,n > u), we will
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use a generalization of the Berry–Esseen theorem. Define Qi = ρiXi and

BK =
∑

0≤j≤K, j =n
var(Qj ) =

∑
0≤i≤K, i =n

ρ2iσ 2.

Fix γ < δ < (α − 2) ∧ 1. Then E[|Qj |2+δ] = ρ(2+δ)j E[|Xj |2+δ] < ∞ for all j . Then, by
Theorem 5.6 of [20, p. 151],

sup
u

|P(YK,n > u)−�(−uB−1/2
K )| ≤ C

B
1+δ/2
K

K∑
j=0

E[|Qj |2+δ]

for some constant C > 0, where � is the standard normal distribution function. To obtain a
bound for the error, note that

1

B
1+δ/2
K

K∑
j=0

E[|Qj |2+δ] = E[|X1|2+δ]
[σ 2(SK(ρ)− ρ2n)]1+δ/2

K∑
j=0

ρ(2+δ)j

= O

(
SK(ρ)

−1−δ/2
K∑
j=0

ρ(2+δ)j
)

= O(y−δ).

It follows that
P(YK,n > u) = �(−uB−1/2

K )+O(y−δ),
which combined with (3.6) gives

P
(
YK,n > u, max

0≤j≤K, j =n ρ
jXj ≤ y

)
= �(−uB−1/2

K )+O(y−δ + y2F̄ (y)).

Since BK = σ 2(SK(ρ)− ρ2n) = σ 2y2(1 − ρ2ny−2), then, by using the inequality

1 ≤ (1 − t)−1/2 ≤ 1 + (1 − t)−3/2t

2
for t > 0,

we obtain

�

(
− u

σy

)
≥ �(−uB−1/2

K )

≥ �

(
− u

σy

(
1 + ρ2n

2y2(1 − ρ2ny−2)3/2

))

≥ �

(
− u

σy

)
− φ

( |u|
σy

) |u|ρ2n

2σy3(1 − ρ2ny−2)3/2

= �

(
− u

σy

)(
1 +O

(
φ(|u|/(σy))|u|
y3�(−u/(σy))

))
.

Since, for u ≤ y, we have

�

(
− u

σy

)
≥ �

(
− 1

σ

)
> 0 and φ

( |u|
σy

)
|u|y−3 = o(y−2),
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it follows that

�(−uB−1/2
K ) = �

(
− u

σy

)
(1 + o(y−2)).

Finally, noting that y−δ = o(y−γ ) and y2F̄ (y) = o(y−γ ) gives

P
(
YK,n > u, max

0≤j≤K, j =n ρ
jXj ≤ y

)
= �

(
− u

σy

)
(1 + o(y−2))+ o(y−γ )

= �

(
− u

σy

)
(1 + o(y−γ )).

We now use the two previous results to obtain an expression for P(YK > x) suitable for the
proof of Theorem 2.2.

Proposition 3.3. Let SK(ρ) = ∑K
n=0 ρ

2n, y = y(ρ,K) = SK(ρ)
1/2, and

D(ρ,K) = {x : x ≤ SK(ρ)
1/2(log SK(ρ))

1/2 log log SK(ρ)},
where K → ∞ as ρ ↗ 1. Then, for any 0 < γ < (α − 2) ∧ 1,

P(YK > x) =
(
�

(
− x

σy

)
+

K∑
n=0

∫ ∞

y

�

(
− (x − t)

σy

)
P(ρnXn ∈ dt)

)
(1 + o(y−γ ))

as ρ ↗ 1, uniformly for x ∈ D(ρ,K).
Proof. Define

Ny = #{0 ≤ j ≤ K : ρjXj > y}.
We start by noting thatYK = YK+1,K+1 in Propositions 3.1 and 3.2, so by these results we obtain

P(YK > x, Ny = 0) = �

(
− x

σy

)
(1 + o(y−γ )).

We can bound P(YK > x, Ny ≥ 2) as follows:

P(YK > x, Ny ≥ 2) ≤ P(Ny ≥ 2)

= P

( ⋃
0≤i =j≤K

{ρiXi > y} ∩ {ρjXj > y}
)

≤
∑

0≤i =j≤K
F̄ (ρ−iy)F̄ (ρ−j y)

≤
( K∑
i=0

F̄ (ρ−iy)
)2

= O

(
F̄ (y)2

( K∑
n=0

ραn
)2)

= O(y4F̄ (y)2),
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where the last equality is justified by Lemma A.1. We now proceed to bound P(YK > x,

Ny = 1). Define YK,n = YK − ρnXn, and note that

P(YK > x, Ny = 1)

=
K∑
n=0

P
(
YK > x, ρnXn > y, max

0≤j≤K, j =n ρ
jXj ≤ y

)

=
K∑
n=0

∫ ∞

y

P
(
YK,n > x − t, max

0≤j≤K, j =n ρ
jXj ≤ y

)
P(ρnXn ∈ dt)

=
K∑
n=0

∫ ∞

y

�

(
− (x − t)

σy

)
P(ρnXn ∈ dt)(1 + o(y−γ )),

where the last step is justified by Propositions 3.1 and 3.2. Combining the estimates for
P(YK > x, Ny = 0),P(YK > x, Ny = 1), and P(YK > x, Ny ≥ 2), we obtain

P(YK > x) =
(
�

(
− x

σy

)
+

K∑
n=0

∫ ∞

y

�

(
− (x − t)

σy

)
P(ρnXn ∈ dt)

)
(1 + o(y−γ ))

+O(y4F̄ (y)2).

Finally, note that, for x ∈ D(ρ,K), we have x ≤ y(log y2)1/2(log log y2). Define L̂(y) =
(log y2)1/2(log log y2). Then

�

(
− x

σy

)
+

K∑
n=0

∫ ∞

y

�

(
− (x − t)

σy

)
P(ρnXn ∈ dt)

≥
K∑
n=0

∫ ∞

y

�

(
− (yL̂(y)− t)

σy

)
P(ρnXn ∈ dt)

=
K∑
n=0

(
�

(
− (L̂(y)− 1)

σ

)
F̄ (ρ−ny)+

∫ ∞

(1−L̂(y))/σ
φ(u)F̄ (ρ−n(yL̂(y)+ σyu)) du

)

≥
K∑
n=0

F̄ (ρ−nyL̂(y))
∫ 0

(1−L̂(y))/σ
φ(u) du

=
(
�

(
L̂(y)− 1

σ

)
− 1

2

) K∑
n=0

F̄ (ρ−nyL̂(y)).

Since yL̂(y) → ∞ and L̂(y) → ∞, then, by Lemma A.1,

y4F̄ (y)2

�(−x/(σy))+ ∑K
n=0

∫ ∞
y
�(−(x − t)/(σy))P(ρnXn ∈ dt)

= O

(
y4F̄ (y)2

F̄ (yL̂(y))
∑K
n=0 ρ

αn

)
.

Note that

y2∑K
n=0 ρ

αn
= (1 − ρ2(K+1))(1 − ρα)

(1 − ρα(K+1))(1 − ρ2)
≤ 1 − ρα

1 − ρ2 → α

2
as ρ ↗ 1.
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It follows that

y4F̄ (y)2

F̄ (yL̂(y))
∑K
n=0 ρ

αn
= O

(
y2F̄ (y)2

F̄ (yL̂(y))

)
= O

(
y−(α−2)L(y)2L̂(y)α

L(yL̂(y))

)
= o(y−γ ).

This completes the proof.

We are now ready to give the proof of Theorem 2.2, which includes the asymptotics of
P(YK > x) for both the region where the normal approximation is valid and the region where
the transition from the normal approximation into the heavy-tailed asymptotic occurs.

Proof of Theorem 2.2. Fix 0 < γ < (α − 2) ∧ 1, and let y = SK(ρ)
1/2. Then, by

Proposition 3.3,

P(YK > x) =
(
�

(
− x

σy

)
+

K∑
n=0

∫ ∞

y

�

(
− (x − t)

σy

)
P(ρnXn ∈ dt)

)
(1 + o(y−γ ))

as ρ ↗ 1, uniformly for x ∈ D(ρ,K). Let

Z(x, ρ,K) = �

(
− x

σy

)
+ 1(x ≥ y)F̄ (x)

K∑
n=0

ραn,

I (x, ρ,K) =
K∑
n=0

∫ ∞

y

�

(
− (x − t)

σy

)
P(ρnXn ∈ dt),

and J (x, y) =
∫ ∞

y

�

(
− (x − t)

σy

)
F(dt).

Then, it only remains to prove that

sup
x∈D(ρ,K)

∣∣∣∣I (x, ρ,K)− 1(x ≥ y)F̄ (x)
∑K
n=0 ρ

αn

Z(x, ρ,K)

∣∣∣∣ → 0

as ρ ↗ 1. First let w = w(y) = σy(c log y)1/2, with 0 < c < 2(α − 2 − γ ), and use the
equivalence �(−x) ∼ x−1φ(x) as x → ∞ to obtain

sup
x<w

∣∣∣∣I (x, ρ,K)− 1(x ≥ y)F̄ (x)
∑K
n=0 ρ

αn

Z(x, ρ,K)

∣∣∣∣ ≤ 1

�(−w/(σy))
K∑
n=0

(F̄ (ρ−ny)+ F̄ (y)ραn)

= O

(
(log y)1/2F̄ (y)

φ((c log y)1/2)

K∑
n=0

ραn
)

= O((log y)1/2y2+c/2F̄ (y))
= o(y−γ ),

where in the first equality we used Lemma A.1. To analyze the supremum over the remaining
values of x, let G(ρ,K) = {x : w ≤ x ≤ y(log y2)1/2 log log y2} (note that, for sufficiently
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large values of y, we have y ≤ w ≤ y(log y2)1/2 log log y2) and note that

sup
x∈G(ρ,K)

∣∣∣∣I (x, ρ,K)− 1(x ≥ y)F̄ (x)
∑K
n=0 ρ

αn

Z(x, ρ,K)

∣∣∣∣
≤ sup
x∈G(ρ,K)

∣∣∣∣J (x, y)− F̄ (x)

F̄ (x)

∣∣∣∣ + sup
x∈G(ρ,K)

∣∣∣∣I (x, ρ,K)− J (x, y)
∑K
n=0 ρ

αn

F̄ (x)
∑K
n=0 ρ

αn

∣∣∣∣. (3.7)

To bound the first supremum in (3.7), integrate by parts and use a change of variables to obtain

sup
x∈G(ρ,K)

∣∣∣∣J (x, y)− F̄ (x)

F̄ (x)

∣∣∣∣

= sup
x∈G(ρ,K)

∣∣∣∣
�(−(x − y)/(σy))F̄ (y)+ ∫ ∞

−(x−y)/(σy) φ(u)F̄ (x + σyu) du− F̄ (x)

F̄ (x)

∣∣∣∣
= sup
x∈G(ρ,K)

∣∣∣∣E
[
F̄ (y ∨ (x + σyZ))

F̄ (x)
− 1

]∣∣∣∣,
where Z is a standard normal random variable. It follows that

sup
x∈G(ρ,K)

∣∣∣∣J (x, y)− F̄ (x)

F̄ (x)

∣∣∣∣
≤ sup
x∈G(ρ,K)

E

[∣∣∣∣ F̄ (x + σyZ)

F̄ (x)
− 1

∣∣∣∣1
(

|Z| ≤ x

σy log log y

)]
(3.8)

+ sup
x∈G(ρ,K)

E

[∣∣∣∣ F̄ (y ∨ (x + σyZ))

F̄ (x)
− 1

∣∣∣∣1
(

|Z| > x

σy log log y

)]
, (3.9)

where we used the fact that, when |Z| ≤ x/(σy log log y) and x ∈ G(ρ,K), we have

x + σyZ ≥ x − σy
x

σy log log y
≥ w

(
1 − 1

log log y

)

 y

for sufficiently large values of y. Note that (3.8) is bounded by

sup
x∈G(ρ,K)

max

{∣∣∣∣ F̄ (x + x/log log y)

F̄ (x)
− 1

∣∣∣∣,
∣∣∣∣ F̄ (x − x/log log y)

F̄ (x)
− 1

∣∣∣∣
}
,

which converges to 0 by basic properties of regularly varying functions. The expectation in
(3.9) is bounded by

sup
x∈G(ρ,K)

(
F̄ (y)

F̄ (x)
+ 1

)
2�

(
− x

σy log log y

)
,

which, by Potter’s theorem (see Theorem 1.5.6(ii) of [4, p. 25]), is in turn bounded by

sup
x∈G(ρ,K)

A

(
x

y

)α+δ
�

(
− x

σy log log y

)
= A

(
w

y

)α+δ
�

(
− w

σy log log y

)

= A′(log y)(α+δ)/2�
(

− (c log y)1/2

log log y

)
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for some constants A,A′ > 1 and δ > 0. Since the above converges to 0 as y → ∞, we have
shown that

sup
x∈G(ρ,K)

∣∣∣∣J (x, y)− F̄ (x)

F̄ (x)

∣∣∣∣ → 0.

To analyze the second supremum in (3.7), integrate by parts to obtain

sup
x∈G(ρ,K)

∣∣∣∣I (x, ρ,K)− J (x, y)
∑K
n=0 ρ

αn

F̄ (x)
∑K
n=0 ρ

αn

∣∣∣∣
= sup
x∈G(ρ,K)

∣∣∣∣�
(

− (x − y)

σy

)
(
∑K
n=0 F̄ (ρ

−ny)− F̄ (y)
∑K
n=0 ρ

αn)

F̄ (x)
∑K
n=0 ρ

αn

+ (1/(σy))
∫ ∞
y
φ(−(x − t)/(σy))(

∑K
n=0 F̄ (ρ

−nt)− F̄ (t)
∑K
n=0 ρ

αn) dt

F̄ (x)
∑K
n=0 ρ

αn

∣∣∣∣
≤ sup
x∈G(ρ,K)

∣∣∣∣J (x, y)F̄ (x)

∣∣∣∣ sup
t≥y

∣∣∣∣
∑K
n=0 F̄ (ρ

−nt)− F̄ (t)
∑K
n=0 ρ

αn

F̄ (t)
∑K
n=0 ρ

αn

∣∣∣∣,

which converges to 0 by Lemma A.1 and the observation that J (x, y) ∼ F̄ (x) uniformly for
x ∈ G(ρ,K), as proven above. This completes the proof.

With asymptotics for the partial sums YK we can now give a proof of our main result,
Theorem 2.1. The idea of the proof is to choose a large enough K and make sure that the tail∑∞
n=K+1 ρ

iXi is not contributing significantly to the asymptotics of Y∞.

Proof of Theorem 2.1. Let YK = ∑K
n=0 ρ

nXn and TK = ∑∞
n=K+1 ρ

nXn, where K = (1 −
ρ)−2. Define SK(ρ) = ∑K

n=0 ρ
2n and

Z(x, ρ,K) = �

(
− x

σ
√
SK(ρ)

)
+ 1(x ≥ SK(ρ)

1/2)F̄ (x)

K∑
n=0

ραn.

Then, by Theorem 2.2,

P(YK > x) = Z(x, ρ,K)(1 + o(1))

as ρ ↗ 1, uniformly for x ∈ D(ρ,K) := {x : x ≤ SK(ρ)
1/2(log SK(ρ))1/2 log log SK(ρ)}. It

can be verified that

Z(x, ρ,K) = F̄ (x)

K∑
n=0

ραn(1 + o(1))

as ρ ↗ 1, uniformly for x ∈ C(ρ,K) := {x : x ≥ SK(ρ)
1/2(log SK(ρ))1/2 log log SK(ρ)}, so,

by Theorem 2.3,

P(YK > x) = Z(x, ρ,K)(1 + o(1))

as ρ ↗ 1, uniformly for x ∈ R. Define

Z(x, ρ) = �

(
−x

√
1 − ρ2

σ

)
+ 1(x ≥ (1 − ρ)−1/2)(1 − ρα)−1F̄ (x).
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By LemmaA.5, our choice ofK gives P(YK > x) = Z(x, ρ,K)(1+o(1)) = Z(x, ρ)(1+o(1))
uniformly for x ∈ R. Then, for any x ∈ R,

P(Y∞ > x) = P(YK + TK > x)

=
∫ ∞

−∞
P(YK > x − t)P(TK ∈ dt)

=
∫ ∞

−∞
Z(x − t, ρ)P(TK ∈ dt)(1 + o(1))

= E[Z(x − TK, ρ)](1 + o(1)).

We will show that E[Z(x − TK, ρ)] = Z(x, ρ)(1 + o(1)) as ρ ↗ 1, uniformly for x ∈ R.
Let y = (1 − ρ)−1/2, and note that, for x ≤ y, Z(x, ρ) ≥ �(−√

2/σ) > 0. Then, using the
inequality |�(a)−�(b)| ≤ |a − b|, we obtain

sup
x<y

∣∣∣∣E[Z(x − TK, ρ)] − Z(x, ρ)

Z(x, ρ)

∣∣∣∣
≤ sup
x<y

C

(
E

[∣∣∣∣�
(

− (x − TK)
√

1 − ρ2

σ

)
−�

(
−x

√
1 − ρ2

σ

)∣∣∣∣
]

+ (1 − ρα)−1F̄ (y)

)

≤ sup
x<y

C

(
E[|TK |]

√
2

σy
+ y2F̄ (y)

)

for some constant C > 0. Since α > 2, y2F̄ (y) → 0. To see that E[|TK |]y−1 → 0 as well,
note that(

E[|TK |]
y

)2

≤ E[T 2
K ]

y2 = var(TK)

y2 = 1

y2

∞∑
n=K+1

ρ2n var(Xn) ≤ σ 2ρ2(K+1), (3.10)

where ρK ≤ e−K(1−ρ) = e−y2
. To analyze the supremum for values of x ≥ y, we split it as

follows:

sup
x≥y

∣∣∣∣E[Z(x − TK, ρ)] − Z(x, ρ)

Z(x, ρ)

∣∣∣∣ ≤ sup
x≥y

E[|Z(x − TK, ρ)− Z(x, ρ)|1(|TK | ≤ x/log y)]
Z(x, ρ)

+ sup
x≥y

E[|Z(x − TK, ρ)− Z(x, ρ)|1(|TK | > x/log y)]
Z(x, ρ)

.

Let w = w(y) = 1/log y. For the first term, we use the inequality |�(a) − �(b)| ≤ φ(a ∧
b)|a − b| for a, b > 0 to obtain

sup
x≥y

E[|Z(x − TK, ρ)− Z(x, ρ)|1(|TK | ≤ xw)]
Z(x, ρ)

≤ sup
x≥y

(
E[|�(−(x − TK)

√
1 − ρ2/σ)−�(−x√1 − ρ2/σ)|1(|TK | ≤ xw)]

(1 − ρα)−1F̄ (x)

+ E

[∣∣∣∣ F̄ (x − TK)

F̄ (x)
− 1

∣∣∣∣1(−xw ≤ TK ≤ (x − y) ∧ xw)
]

+ F̄ (x)P((x − y) ∧ xw < TK ≤ xw)

(1 − ρα)�(−x√1 − ρ2/σ)

)
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≤ sup
x≥y

(
φ

(
− (1 − w)x

√
1 − ρ2

σ

)
E[|TK |]

√
1 − ρ2(1 − ρα)

σ F̄ (x)
(3.11)

+ max

{∣∣∣∣ F̄ (x − xw)

F̄ (x)
− 1

∣∣∣∣,
∣∣∣∣ F̄ (x + xw)

F̄ (x)
− 1

∣∣∣∣
}

+ y2F̄ (x)1(x(1 − w) < y)

�(−x√1 − ρ2/σ)

)
.

(3.12)

The maximum in (3.12) converges to 0 by basic properties of regularly varying functions (since
w → 0), while the second term is of order y2F̄ (y), which also converges to 0. Finally, the
supremum in (3.11) is of order

sup
x≥y

exp

(
−x

2(1 − w)2(1 + ρ)

2σ 2y2

)
E[|TK |]
y3F̄ (x)

≤ sup
x≥y

exp

(
−x

2(1 − w)2(1 + ρ)

2σ 2y2

)
σρK+1

y2F̄ (x)
(by (3.10))

≤ sup
t≥1

exp

(
− t

2(1 − w)2(1 + ρ)

2σ 2

)
F̄ (y)

F̄ (ty)

σe−y2

y2F̄ (y)

≤ sup
t≥1

exp

(
− t

2(1 − w)2(1 + ρ)

2σ 2

)
At−α+1 σe−y2

y2F̄ (y)

→ 0,

where to obtain the last inequality we used Potter’s theorem (see Theorem 1.5.6(ii) of [4,
p. 25]) with δ = 1 and A > 1 a constant. It only remains to show that the supremum involving
|TK | > xw converges to 0. To do this, simply note that

sup
x≥y

E[|Z(x − TK, ρ)− Z(x, ρ)|1(|TK | > xw)]
Z(x, ρ)

≤ sup
x≥y

(
E[|�(−(x − TK)

√
1 − ρ2/σ)−�(−x√1 − ρ2/σ)|1(|TK | > xw)]

(1 − ρα)−1F̄ (x)

+ E

[∣∣∣∣ F̄ (x − TK)1(TK ≤ x − y)

F̄ (x)
− 1

∣∣∣∣1(|TK | > xw)

])

≤ sup
x≥y

(
(1 − ρα)P(|TK | > xw)

F̄ (x)
+

(
F̄ (y)

F̄ (x)
+ 1

)
P(|TK | > xw)

)
. (3.13)

Note that, for any t ≥ yw,

P(TK > t) ≤ P

( ∞⋃
n=K+1

{ρnXn > t(1 − √
ρ)ρ(n−K−1)/2}

)

≤
∞∑
m=0

F̄ (t (1 − √
ρ)ρ−K−1ρ−m/2)

= O

(
F̄ (t (1 − √

ρ)ρ−K−1)

∞∑
m=0

ραm/2
)

= O(F̄ (t (1 − √
ρ)ρ−K−1)(1 − ρα/2)−1).
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Using Potter’s theorem (see Theorem 1.5.6(ii) of [4, p. 25]) with δ = α − 2, we obtain

P(TK > t) = O(F̄ (t)(1 − √
ρ)−2ρ2(K+1)(1 − ρα/2)−1) = O(F̄ (t)e−2y2

y6).

It follows that (3.13) is of order

sup
x≥y

(
F̄ (xw)e−2y2

y4

F̄ (x)
+ F̄ (y)F̄ (xw)e−2y2

y6

F̄ (x)

)
= O(w−α−δe−2y2

y4) = o(1).

This completes the proof.

The last result of this section gives the precise threshold at which the behavior of P(Y∞ > x)

transitions from the normal approximation into the heavy-tailed asymptotic. Just as the results
obtained for the M/G/1 queue in [19], the transition is very sharp and depends on the slowly
varying part of F .

Lemma 3.1. Let

Z(x, ρ) = �

(
−x

√
1 − ρ2

σ

)
+ 1(x ≥ (1 − ρ)−1/2)(1 − ρα)−1F̄ (x),

and define z(ρ) = κ(1 − ρ)−1/2|log(1 − ρ)|1/2, where κ = σ
√
(α − 2)/2. Then the following

assertions hold.

(a) For any c < 1, as ρ ↗ 1,

sup
0<x≤cz(ρ)

∣∣∣∣ Z(x, ρ)

�(−x√1 − ρ2/σ)
− 1

∣∣∣∣ → 0. (3.14)

Furthermore, if c = 1, (3.14) holds provided that sup0≤t≤x L(t)/(log x)(α−1)/2 → 0.

(b) For any c > 1, as ρ ↗ 1,

sup
x≥cz(ρ)

∣∣∣∣ Z(x, ρ)

(1 − ρα)−1F̄ (x)
− 1

∣∣∣∣ → 0. (3.15)

Furthermore, if c = 1, (3.15) holds provided that inf t≥x L(t)/(log x)(α−1)/2 → ∞.

Proof. We start with part (a), for which we need to prove that

sup
(1−ρ)−1/2≤x≤cz(ρ)

(1 − ρα)−1F̄ (x)

�(−x√1 − ρ2/σ)
→ 0.

Let y = y(ρ) = (1 − ρ)−1/2, and note that z = z(ρ) = κy(log y2)1/2. Use the inequality
�(−z) ≥ zφ(z)/(z2 + 1) to obtain

sup
y≤x≤cz

(1 − ρα)−1F̄ (x)

�(−x√1 − ρ2/σ)

≤ sup
y≤x≤cz

(1 − ρ)−1F̄ (x)(x2(1 − ρ)+ 1)

x(1 − ρ)1/2φ(−x√1 − ρ2/σ)

≤ sup
y≤x≤cz

C′yL(x) exp

(
x2

σ 2y2 − (α − 1) log x

)

≤ C′y sup
y≤t≤cz

L(t)max

{
exp

(
1

σ 2 − (α − 1) log y

)
, exp

(
c2z2

σ 2y2 − (α − 1) log(cz)

)}
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≤ C′′y sup
y≤t≤cz

L(t)max

{
y−(α−1), exp

(
c2κ2 log y2

σ 2 − (α − 1) log(y(log y)1/2)

)}

= C′′ sup
y≤t≤cz

L(t)max

{
y−(α−2),

y−(1−c2)(α−2)

(log y)(α−1)/2

}
.

That the expression above converges to 0 when c < 1 follows from the fact that L̃(x) =
sup0≤t≤x L(t) is slowly varying. When c = 1, just note that

1

(log y)(α−1)/2
sup
y≤t≤z

L(t) ∼ 1

(log z)(α−1)/2
sup
y≤t≤z

L(t) ≤ L̃(z)

(log z)(α−1)/2
.

For part (b), we need to prove that

sup
x≥cz(ρ)

�(−x√1 − ρ2/σ)

(1 − ρα)−1F̄ (x)
→ 0.

We use the inequality �(−z) ≤ φ(z)/z to obtain

sup
x≥cz

�(−x√1 − ρ2/σ)

(1 − ρα)−1F̄ (x)
≤ sup
x≥cz

Cφ(x
√

1 − ρ2/σ)

x(1 − ρ)−1/2F̄ (x)

≤ C′ sup
x≥cz

1

yL(x)
exp

(
−x

2(1 + ρ)

2σ 2y2 + (α − 1) log x

)

≤ C′

y inf t≥cz L(t)
exp

(
−c

2z2(1 + ρ)

2σ 2y2 + (α − 1) log(cz)

)

≤ C′′

inf t≥cz L(t)
y−(c2−1)(α−2)(log y)(α−1)/2.

The same arguments used above give the result.

Appendix A. Technical lemmas

The first two results, Lemmas A.1 and A.2, refer to properties of regularly varying functions
that are used on multiple occasions in the proofs above, and are potentially of independent
interest.

Lemma A.1. As x → ∞,

sup
0<ρ<1

sup
K≥0

∣∣∣∣
∑K
n=0 F̄ (ρ

−nx)
F̄ (x)

∑K
n=0 ρ

αn
− 1

∣∣∣∣ → 0.

Proof. Fix M ≥ 1. Then

sup
K≥0

∣∣∣∣
∑K
n=0 F̄ (ρ

−nx)
F̄ (x)

∑K
n=0 ρ

αn
− 1

∣∣∣∣ ≤ sup
K≥0

1∑K
n=0 ρ

αn

K∑
n=0

ραn
∣∣∣∣ F̄ (ρ

−nx)
ραnF̄ (x)

− 1

∣∣∣∣

≤ max

{
sup

0≤K≤M|log ρ|−1

1∑K
n=0 ρ

αn

K∑
n=0

ραn
∣∣∣∣L(ρ

−nx)
L(x)

− 1

∣∣∣∣,

sup
K≥M|log ρ|−1

1∑K
n=0 ρ

αn

K∑
n=0

ραn
∣∣∣∣L(ρ

−nx)
L(x)

− 1

∣∣∣∣
}
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≤ max

{
sup

1≤t≤eM

∣∣∣∣L(tx)L(x)
− 1

∣∣∣∣,

sup
K≥M|log ρ|−1

1∑M|log ρ|−1

n=0 ραn

K∑
n=0

ραn
∣∣∣∣L(ρ

−nx)
L(x)

− 1

∣∣∣∣
}
.

To analyze the second term, note that, for K ≥ M|log ρ|−1,

K∑
n=0

ραn
∣∣∣∣L(ρ

−nx)
L(x)

− 1

∣∣∣∣

≤ sup
1≤t≤eM

∣∣∣∣L(tx)L(x)
− 1

∣∣∣∣
M|log ρ|−1∑

n=0

ραn +
K∑

n=M|log ρ|−1+1

ραn
∣∣∣∣L(ρ

−nx)
L(x)

− 1

∣∣∣∣,

from which we obtain

sup
K≥0

∣∣∣∣
∑K
n=0 F̄ (ρ

−nx)
F̄ (x)

∑K
n=0 ρ

αn
− 1

∣∣∣∣

≤ sup
1≤t≤eM

∣∣∣∣L(tx)L(x)
− 1

∣∣∣∣ + sup
K≥M|log ρ|−1

1 − ρα

1 − e−αM
K∑

n=M|log ρ|−1+1

ραn
∣∣∣∣L(ρ

−nx)
L(x)

− 1

∣∣∣∣.

For the last sum, fix 0 < δ < α−2 and use Potter’s theorem (see Theorem 1.5.6(ii) of [4, p. 25])
to obtain, for some Aδ > 1,

K∑
n=M|log ρ|−1+1

ραn
∣∣∣∣L(ρ

−nx)
L(x)

− 1

∣∣∣∣ ≤
K∑

n=M|log ρ|−1+1

ραn
(
L(ρ−nx)
L(x)

+ 1

)

≤ Aδ

∞∑
n=M|log ρ|−1+1

ρ(α−δ)n +
∞∑

n=M|log ρ|−1+1

ραn

≤ Aδe
−(α−δ)M(1 − ρα−δ)−1 + e−αM(1 − ρα)−1

≤ C(1 − ρα−δ)−1e−(α−δ)M.

It follows that

sup
0<ρ<1

sup
K≥0

∣∣∣∣
∑K
n=0 F̄ (ρ

−nx)
F̄ (x)

∑K
n=0 ρ

αn
− 1

∣∣∣∣ ≤ sup
0<ρ<1

{
sup

1≤t≤eM

∣∣∣∣L(tx)L(x)
− 1

∣∣∣∣ + 1 − ρα

1 − ρα−δ C
′e−(α−δ)M

}

= sup
1≤t≤eM

∣∣∣∣L(tx)L(x)
− 1

∣∣∣∣ + α

α − δ
C′e−(α−δ)M.

Since M ≥ 1 was arbitrary, and the supremum converges to 0 as x → ∞ for any fixed M , the
result follows.

Lemma A.2. For 0 < ρ < 1 and y > 0, define

W
(y)
n = ρnXn | ρnXn ≤ y and Fn,y(x) = P(W(y)

n ≤ x) = F(ρ−n(x ∧ y))
F (ρ−ny)

.
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Then, for any 2 < β < α ∧ 3 and any 0 < φ ≤ c(log y)1/2(log log y)/y, where c > 0 is a
constant, we have

E[eφW(y)
n ] = 1 + φ2ρ2nσ 2

2
+ o(ρnβy−β),

E[W(y)
n eφW

(y)
n ] = φρ2nσ 2 + o(ρnβy1−β),

E[(W(y)
n )2eφW

(y)
n ] = ρ2nσ 2 + o(ρnβy2−β),

as y → ∞.

Proof. We start by noting that the balance condition satisfied by F guarantees that
E[|X1|γ ] < ∞ for any 0 ≤ γ < α. Choose β < γ < min{α, 3}. The first step of the
analysis is to write

E[eφW(y)
n ] = 1 + φ E[W(y)

n ] + φ2

2
E[(W(y)

n )2]

+ E

[
eφW

(y)
n − 1 − φW

(y)
n − φ2

2
(W

(y)
n )2

]
,

E[W(y)
n eφW

(y)
n ] = E[W(y)

n ] + φ E[(W(y)
n )2] + E[W(y)

n (eφW
(y)
n − 1 − φW

(y)
n )],

E[(W(y)
n )2eφW

(y)
n ] = E[(W(y)

n )2] + E[(W(y)
n )2(eφW

(y)
n − 1)].

The first two moments of W(y)
n can be computed to be

E[W(y)
n ] = ρn

F (ρ−ny)

(
E[X1] −

∫ ∞

ρ−ny
uF (du)

)
= O(yF̄ (ρ−ny)),

E[(W(y)
n )2] = ρ2n

F (ρ−ny)

(
E[X2

1] −
∫ ∞

ρ−ny
u2F(du)

)
= ρ2nσ 2 +O(y2F̄ (ρ−ny)).

Note that F̄ (x) = o(x−γ ) as x → ∞, so combining the estimates above we obtain

E[eφW(y)
n ] = 1 + φ2ρ2nσ 2

2
+ o(φρnγ y1−γ (1 + φy))

+ E

[
eφW

(y)
n − 1 − φW

(y)
n − φ2

2
(W

(y)
n )2

]
,

E[W(y)
n eφW

(y)
n ] = φρ2nσ 2 + o(ρnγ y1−γ (1 + φy))+ E[W(y)

n (eφW
(y)
n − 1 − φW

(y)
n )],

E[(W(y)
n )2eφW

(y)
n ] = ρ2nσ 2 + o(ρnγ y2−γ )+ E[(W(y)

n )2(eφW
(y)
n − 1)].

Next, we derive bounds for the remaining expectations. Letgk(t) = et−1−t−t2/2−· · ·−tk/k!
for k ∈ {0, 1, 2, . . .}. We use the identities g1(t) = t2eξ1/2 and g2(t) = t3eξ2/6 for some ξ1, ξ2
between 0 and t to obtain

E[|g2(φW
(y)
n )|] ≤ φ3e

6
E

[
|W(y)

n |31

(
|W(y)

n | ≤ 1

φ

)]
φ2 E

[
(W

(y)
n )21

(
W
(y)
n < − 1

φ

)]

+ φ3

6
E

[
(W

(y)
n )3eφW

(y)
n 1

(
W
(y)
n >

1

φ

)]
.
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Similarly, using g1(t) = t2eξ1/2 and g0(t) = teξ3 , we obtain

E[|W(y)
n g1(φW

(y)
n )|] ≤ φ2 e

2
E

[
|W(y)

n |31

(
|W(y)

n | ≤ 1

φ

)]
+ 2φ E

[
(W

(y)
n )21

(
W
(y)
n < − 1

φ

)]

+ φ2

2
E

[
(W

(y)
n )31

(
W
(y)
n >

1

φ

)]
.

Finally,

E[|(W(y)
n )2g0(φW

(y)
n )|] ≤ φe E

[
|W(y)

n |31

(
|W(y)

n | ≤ 1

φ

)]
+ E

[
(W

(y)
n )21

(
W
(y)
n < − 1

φ

)]

+ φ E

[
(W

(y)
n )3eφW

(y)
n 1

(
W
(y)
n >

1

φ

)]
.

We now analyze each of the three expectations appearing in the expressions above. First, note
that

E

[
|W(y)

n |31

(
|W(y)

n | ≤ 1

φ

)]
= ρ3n

∫ ρ−ny

−∞
|x|31

(
|ρnx| ≤ 1

φ

)
F(dx)

F (ρ−ny)

= ρ3n

F (ρ−ny)

∫ ρ−n(y∧1/φ)

−ρ−n/φ
|x|3F(dx)

≤ ρ3n(ρ−n/φ)3−γ

F (ρ−ny)

∫ ρ−n(y∧1/φ)

−ρ−n/φ
|x|γ F (dx)

≤ ρnγ φ−(3−γ )

F (y)
E[|X1|3]

= O(ρnγ φγ−3).

Next, we bound the second expectation as follows:

E

[
(W

(y)
n )21

(
W
(y)
n < − 1

φ

)]
= ρ2n

∫ ρ−ny

−∞
x21

(
ρnx < − 1

φ

)
F(dx)

F (ρ−ny)

= ρ2n

F (ρ−ny)

(
ρ−2nF

(
−ρ

−n

φ

)
−

∫ −ρ−n/φ

−∞
2xF(x) dx

)

= O

(
F̄

(
ρ−n

φ

)
+ ρ2n

∫ ∞

ρ−n/φ
xF̄ (x) dx

)

= O

(
φ−2F̄

(
ρ−n

φ

))

= o(ρnγ φγ−2),

where in the third equality we used the balance condition satisfied by F and in the fourth
equality we used Karamata’s theorem. To analyze the last expectation, recall thatW(y)

n ≤ y, so

E

[
(W

(y)
n )3eφW

(y)
n 1

(
W
(y)
n >

1

φ

)]
≤ eφy E

[
(W

(y)
n )31

(
W
(y)
n >

1

φ

)]

= eφyρ3n
∫ ρ−ny

−∞
x31

(
ρnx >

1

φ

)
F(dx)

F (ρ−ny)
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≤ eφyρ3n(ρ−ny)3−γ

F (ρ−ny)

∫ ρ−ny

ρ−n(y∧1/φ)
xγ dx

≤ eφyρnγ y3−γ E[|X1|γ ]
F(ρ−ny)

= O(φγ−3ρnγ eφy(φy)3−γ ).

Note that, for the range of values of φ that we consider, we have

eθy(θy)3−γ ≤ ec(log y)1/2(log log y)(c(log y)1/2(log log y))3−γ =: L̂(y),
where L̂(y) → ∞ is slowly varying. Combining the estimates derived above we obtain

E[W(y)
n (eφW

(y)
n − 1 − φW

(y)
n )] = O(φγ ρnγ L̂(y)),

E[W(y)
n (eφW

(y)
n − 1 − φW

(y)
n )] = O(φγ−1ρnγ L̂(y)),

E[(W(y)
n )2(eφW

(y)
n − 1)] = O(φγ−2ρnγ L̂(y)),

which in turn yield

E[eφW(y)
n ] = 1 + φ2ρ2nσ 2

2
+ o(φρnγ y1−γ (1 + φy))+O(φγ ρnγ L̂(y)),

E[W(y)
n eφW

(y)
n ] = φρ2nσ 2 + o(ρnγ y1−γ (1 + φy))+O(φγ−1ρnγ L̂(y)),

E[(W(y)
n )2eφW

(y)
n ] = ρ2nσ 2 + o(ρnγ y2−γ )+O(φγ−2ρnγ L̂(y)).

The statement of the lemma follows by noting that ρnγ ≤ ρnβ and φ ≤ y−1L̃(y), where L̃ is
slowly varying, and using the fact that yβ−γ L0(y) → 0 for any slowly varying L0.

The following two results, Lemmas A.3 and A.4, give asymptotic expressions for the change
of measure parameter and the moments of the resulting tilted random variables used in the proof
of Proposition 3.1.

Lemma A.3. Set y = y(ρ,K) = SK(ρ)
1/2, whereSK(ρ) =∑K

n=0 ρ
2n andK → ∞ asρ↗ 1.

Let W(y)
i = ρiXi | ρiXi ≤ y, Fi,y(x) = P(W(y)

i ≤ x) = F(ρ−i (x ∧ y))/F (ρ−iy), and

�i,y(θ) = log E[eθW(y)
i ]. Define θ̂ = θ̂ (ρ,K, u, n) to be the positive solution to the equation

−u+
∑

i∈I (K,n)
�′
i,y(θ̂ ) = 0,

where I (K, n) = {i : 0 ≤ i ≤ K, i = n}. Then, for any 0 ≤ n ≤ K and 0 < γ < (α− 2)∧ 1,
and, as ρ ↗ 1,

θ̂ (ρ,K, u, n) = u

σ 2SK(ρ)
+ o

((
u

SK(ρ)

)1+γ)

uniformly for u ∈ B(ρ,K) = {x : SK(ρ)1/2 ≤ x ≤ SK(ρ)
1/2(log SK(ρ))1/2 log log SK(ρ)}.

Proof. We start by noting that the balance condition satisfied by F guarantees that
E[|X1|β ] < ∞ for any 0 ≤ β < α. Choose 2 + γ < β < α ∧ 3. Fix 0 < ε < 1, and
define

θ±ε = u

σ 2SK(ρ)

(
1 ± ε

(
u

SK(ρ)

)γ)
.
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We will show that

−u+
∑

i∈I (K,n)
�′
i,y(θ−ε) < 0 and −u+

∑
i∈I (K,n)

�′
i,y(θ+ε) > 0.

To simplify the notation, let S = SK(ρ) and recall that K → ∞, so S → ∞ as ρ ↗ 1. Note
that y → ∞ as well, and, for u ∈ B(ρ,K),

θ±ε ≤ (log S)1/2 log log S

σ 2S1/2

(
1 + ε

(
(log S)1/2 log log S

S1/2

)γ)

= (2 log y)1/2 log(2 log y)

σ 2y

(
1 + ε

(
(2 log y)1/2 log(2 log y)

y

)γ)

≤ C(log y)1/2(log log y)

y

for some constant C > 0. Therefore, by Lemma A.2,

∑
i∈I (K,n)

�′
i,y(θ±ε) =

∑
i∈I (K,n)

E[W(y)
i eθ±εW

(y)
i ]

E[eθ±εW(y)
i ]

=
∑

i∈I (K,n)

θ±ερ2iσ 2 + o(ρiβy1−β)
1 + θ2±ερ2iσ 2/2 + o(ρiβy−β)

=
∑

i∈I (K,n)
[θ±ερ2iσ 2 +O(θ3±ερ4i )+ o(ρiβy1−β)]

= θ±εσ 2(S − ρ2n)+O

(
θ3±ε

K∑
i=0

ρ4i
)

+ o

(
y1−β

K∑
i=0

ρβi
)

= θ±εσ 2S +O(θ±ε + θ3±εS)+ o(S(3−β)/2).

Substituting the definition of θ±ε into the expression above and noting that θ±ε = O(u/S), gives

∑
i∈I (K,n)

�′
i,y(θ±ε) = u

(
1 ± ε

(
u

S

)γ)
+O

((
u

S

)
+

(
u

S

)3

S

)
+ o(S(3−β)/2)

= u

(
1 ± ε

(
u

S

)γ
+O

((
1

S

)
+

(
u

S

)2)
+ o

(
S(3−β)/2

u

))

= u

(
1 ±

(
u

S

)γ [
ε + o

(
1

S(β−2−γ )/2

)])
,

where in the last step we used the fact that S1/2 ≤ u ≤ S1/2(log S)1/2 log log S. Therefore,

−u+
∑

i∈I (K,n)
�′
i,y(θ±ε) = ±u

(
u

S

)γ
(ε + o(1)).

Since ε > 0 was arbitrary, the statement of the lemma follows.
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Lemma A.4. Let SK(ρ) = ∑K
n=0 ρ

2n, y = y(ρ,K) = SK(ρ)
1/2, W(y)

i = ρiXi | ρiXi ≤ y,
Fi,y(x) = P(W(y)

i ≤ x), �i,y(θ) = log E[eθW(y)
i ], and Fθ,i,y(dx) = eθx−�i,y(θ)Fi,y(dx).

Suppose that Vi is distributed according to F
θ̂,i,y

(·), where θ̂ = θ̂ (ρ,K, u, n) is the positive
solution to the equation

−u+
∑

i∈I (K,n)
�′
i,y(θ̂ ) = 0,

where K → ∞ as ρ ↗ 1, I (K, n) = {i : 0 ≤ i ≤ K, i = n}, and

u ∈ B(ρ,K) = {x : SK(ρ)1/2 ≤ x ≤ SK(ρ)
1/2(log SK(ρ))

1/2 log log SK(ρ)}.
Suppose that E[|X1|2+δ] < ∞ and E[X2

1] = σ 2. Let V̂i = Vi − E[Vi]. Then, for any
0 < γ < (α − 2) ∧ 1,

E[V̂ 2
i ] = ρ2iσ 2 + o(ρi(2+γ )y−γ ),

E[|V̂i |2+δ] = O(eθ̂yρ(2+δ)i),

exp

( ∑
i∈I (K,n)

�i,y(θ̂ )

) ∏
i∈I (K,n)

F (ρ−iy) = exp

(
u2

2σ 2SK(ρ)
+ o(y−γ )

)
,

uniformly for x ∈ B(ρ,K) = {x : SK(ρ)1/2 ≤ x ≤ SK(ρ)
1/2(log SK(ρ))1/2 log log SK(ρ)}.

Proof. Choose 2 + γ < β < α ∧ 3. We start by noting that

E[Vi] =
∫ y

−∞
zF

θ̂,i,y
(dz) =

∫ y

−∞
zeθ̂z−�i,y(θ̂)Fi,y(dz) = E[W(y)

i eθ̂W
(y)
i ]

E[eθ̂W(y)
i ]

,

E[V 2
i ] =

∫ y

−∞
z2F

θ̂,i,y
(dz) =

∫ y

−∞
z2eθ̂z−�i,y(θ̂)Fi,y(dz) = E[(W(y)

i )2eθ̂W
(y)
i ]

E[eθ̂W(y)
i ]

.

Since θ̂ = O(u/S), then θ̂ satisfies the conditions of Lemma A.2 for all u ∈ B(ρ,K). It
follows from Lemma A.2 that

E[Vi] = θ̂ρ2iσ 2 + o(ρiβy1−β)
1 + θ̂2ρ2iσ 2/2 + o(ρiβy−β)

= θ̂ρ2iσ 2 + o(ρiβy1−β),

E[V 2
i ] = ρ2iσ 2 + o(ρiβy2−β)

1 + θ̂2ρ2iσ 2/2 + o(ρiβy−β)
= ρ2iσ 2 + o(ρiβy2−β).

Therefore,

E[V̂ 2
i ] = E[V 2

i ] − (E[Vi])2 = ρ2iσ 2 + o(ρiβy2−β) = ρ2iσ 2 + o(ρi(2+γ )y−γ ).

To bound the 2 + δ moment, note that

E[|V̂i |2+δ] = E[|Vi − E[Vi]|2+δ]
=

∫ y

0
|z− E[Vi]|2+δeθ̂z−�i,y(θ̂)Fi,y(dz)

≤ eθ̂y

E[eθ̂W(y)
i ]

E[|W(y)
i − E[Vi]|2+δ]
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= eθ̂y

E[eθ̂W(y)
i ]F(ρ−iy)

E[|ρiXi − E[Vi]|2+δ1(ρiXi ≤ y)]

≤ eθ̂y E[|ρiXi +O(θ̂ρ2i )|2+δ]
= O(eθ̂yρ(2+δ)i).

Finally, for the third statement of the lemma, we use Lemma A.2 again to obtain

exp

( ∑
i∈I (K,n)

�i,y(θ̂ )

) ∏
i∈I (K,n)

F (ρ−iy)

=
∏

i∈I (K,n)
E[eθ̂W(y)

i ]F(ρ−iy)

=
∏

i∈I (K,n)

(
1 + θ̂2ρ2iσ 2

2
+ o(ρiβy−β)

)
(1 − F̄ (ρ−iy))

=
∏

i∈I (K,n)

(
1 + θ̂2ρ2iσ 2

2
+ o(ρiβy−β)

)

= exp

( ∑
i∈I (K,n)

log

(
1 + θ̂2ρ2iσ 2

2
+ o(ρiβy−β)

))
.

Using the identity log(1 + t) = t +O(t2) and noting that θ̂2 = o(y−β) gives

∑
i∈I (K,n)

log

(
1 + θ̂2ρ2iσ 2

2
+ o(ρiβy−β)

)
=

∑
i∈I (K,n)

(
θ̂2ρ2iσ 2

2
+ o(ρiβy−β)

)

= θ̂2σ 2

2
(SK(ρ)− ρ2n)+ o

(
y−β

K∑
i=0

ρiβ
)

= θ̂2σ 2

2
SK(ρ)+ o(y−βSK(ρ)).

Finally, by Lemma A.3,

θ̂2σ 2

2
SK(ρ)+ o(y−βSK(ρ))

=
(

u

σ 2SK(ρ)
+ o

((
u

SK(ρ)

)β−1))2
σ 2

2
SK(ρ)+ o(y−βSK(ρ))

= u2

2σ 2SK(ρ)
+ o

((
u

SK(ρ)

)β
SK(ρ)

)
,

where the last step follows by noting that u/SK(ρ) ≥ y−1 for u ∈ B(ρ,K). Noting that
(

u

SK(ρ)

)β
SK(ρ) ≤ (log SK(ρ))β/2(log log SK(ρ))β

SK(ρ)(β−2)/2
= o

(
1

SK(ρ)γ/2

)
= o(y−γ )

completes the proof.
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The last result shows how largeK must be so that the tail
∑∞
n=K+1 ρ

nXn becomes negligible
in the asymptotic behavior of Y∞.

Lemma A.5. Let K ≥ (1 − ρ)−2, SK(ρ) = ∑K
n=0 ρ

2n,

Z(x, ρ,K) = �

(
− x

σ
√
SK(ρ)

)
+ 1(x ≥ SK(ρ)

1/2)F̄ (x)

K∑
n=0

ραn,

and

Z(x, ρ) = �

(
−x

√
1 − ρ2

σ

)
+ 1(x ≥ (1 − ρ)−1/2)(1 − ρα)−1F̄ (x).

Then, as ρ ↗ 1,

sup
x∈R

∣∣∣∣Z(x, ρ,K)Z(x, ρ)
− 1

∣∣∣∣ → 0.

Proof. We start by pointing out that our choice of K gives

ρK = eK log ρ ∼ e−K(1−ρ) ≤ e−(1−ρ)−1 → 0

as ρ ↗ 1. Also, note that, since SK(ρ) = (1 − ρ2(K+1))(1 − ρ2)−1 < (1 − ρ)−1,

|Z(x, ρ)− Z(x, ρ,K)|

≤
∣∣∣∣�

(
x
√

1 − ρ2

σ
√

1 − ρ2(K+1)

)
−�

(
x
√

1 − ρ2

σ

)∣∣∣∣
+ |1(SK(ρ)1/2 ≤ x < (1 − ρ)−1/2)− ρα(K+1)1(x ≥ SK(ρ)

1/2)| F̄ (x)

(1 − ρα)
.

Since |�(a)−�(b)| ≤ φ(|a| ∧ |b|)|a − b| whenever a and b have the same sign, then

∣∣∣∣�
(

x
√

1 − ρ2

σ
√

1 − ρ2(K+1)

)
−�

(
x
√

1 − ρ2

σ

)∣∣∣∣
≤ φ

( |x|√1 − ρ2

σ

)∣∣∣∣ 1√
1 − ρ2(K+1)

− 1

∣∣∣∣ |x|
√

1 − ρ2

σ

≤ φ

( |x|√1 − ρ2

σ

)
ρ2(K+1)

2(1 − ρ2(K+1))3/2

|x|√1 − ρ2

σ
.

Next, note that, for x ≤ (1 − ρ)−1/2, Z(x, ρ) ≥ �(−√
2/σ) > 0, so

sup
x<(1−ρ)−1/2

∣∣∣∣Z(x, ρ)− Z(x, ρ,K)

Z(x, ρ)

∣∣∣∣

≤ C sup
x<(1−ρ)−1/2

(
ρ2(K+1)φ

( |x|√1 − ρ2

σ

) |x|√1 − ρ2

σ
+ F̄ (SK(ρ)

1/2)

1 − ρ

)

≤ C′
(
ρ2(K+1) + F̄ ((1 − ρ)−1/2)

1 − ρ

)

for some constants C,C′ > 0; in the second inequality we used the facts that φ(|z|)|z| is
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bounded and SK(ρ)1/2 ∼ 1/
√

2(1 − ρ). Since ρK → 0 and z2F̄ (z) → 0 as z → ∞, then the
supremum above converges to 0. To analyze the supremum over [(1 − ρ)−1/2,∞), note that

sup
x≥(1−ρ)−1/2

∣∣∣∣Z(x, ρ)− Z(x, ρ,K)

Z(x, ρ)

∣∣∣∣

≤ sup
x≥(1−ρ)−1/2

C′′

Z(x, ρ)

(
ρ2(K+1)φ

( |x|√1 − ρ2

σ

) |x|√1 − ρ2

σ
+ ρα(K+1)F̄ (x)

1 − ρα

)

≤ sup
x≥(1−ρ)−1/2

C′′ρ2(K+1)

(1 − ρα)−1F̄ (x)
φ

( |x|√1 − ρ2

σ

) |x|√1 − ρ2

σ
+ C′′ρα(K+1)

for some other constant C′′ > 0. Since ραK → 0, it only remains to verify that the last
supremum converges to 0 as well. To do this, fix 0 < δ < 1 and note that 1/F̄ (x) = o(xα+δ)
as x → ∞, so

sup
x≥(1−ρ)−1/2

ρ2(K+1)

(1 − ρα)−1F̄ (x)
φ

( |x|√1 − ρ2

σ

) |x|√1 − ρ2

σ

= o

(
ρ2K(1 − ρ)3/2 sup

x≥(1−ρ)−1/2
x1+α+δ exp

(
−x

2(1 − ρ2)

2σ 2

))

= o

(
ρ2K(1 − ρ)(2−α−δ)/2 sup

z≥(1+ρ)1/2
z1+α+δ exp

(
− z2

2σ 2

))

= o

(
exp

(
−2K(1 − ρ)+ (α + δ − 2)

2
|log(1 − ρ)|

))

= o(1).

This completes the proof.
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