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Given two distributions F and G on the nonnegative integers we
propose an algorithm to construct in- and out-degree sequences from
samples of i.i.d. observations from F and G, respectively, that with
high probability will be graphical, that is, from which a simple di-
rected graph can be drawn. We then analyze a directed version of the
configuration model and show that, provided that F and G have finite
variance, the probability of obtaining a simple graph is bounded away
from zero as the number of nodes grows. We show that conditional
on the resulting graph being simple, the in- and out-degree distribu-
tions are (approximately) F and G for large size graphs. Moreover,
when the degree distributions have only finite mean we show that
the elimination of self-loops and multiple edges does not significantly
change the degree distributions in the resulting simple graph.

1. Introduction. In order to study complex systems such as the World
Wide Web (WWW)1 or the Twitter network we propose a model for gener-
ating a simple directed random graph with prescribed degree distributions.
The ability to match degree distributions to real graphs is perhaps the first
characteristic one would desire from a model, and although several models
that accomplish this for undirected graphs have been proposed in the recent
literature [8, 10, 11, 20], not much has been done for the directed case. In
the WWW example that motivates this work, vertices represent webpages
and the edges represent the links between them; for the Twitter graph ver-
tices represent people and an edge from one vertex to another means that
the first person is “following” the second. Empirical studies (e.g., [9, 15])
suggest that both the in-degree and out-degree, number of links pointing to
a page and the number of outbound links of a page, respectively, follow a
power-law distribution, a characteristic often referred to as the scale-free
property.
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prescribed degree distributions.
1Although the WWW graph does in general contain self-links and multiple links from

one page to another, some algorithms, such as Google’s PageRank, discount their effects,
so for this purpose it is useful to think of the WWW graph as being simple.
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The model we propose in this paper is closely related to the work in [8] for
undirected graphs, where given a probability distribution F , the goal is to
provide an algorithm to generate a simple random graph whose degree dis-
tribution is approximately F . Two of the models presented in [8], as well as
the model in [26], are in turn related to the well-known configuration model
[6, 27], where vertices are given stubs or half-edges according to a degree
sequence {di} and these stubs are then randomly paired to form edges. The
configuration model has already proven to be of great theoretical value in
the analysis of undirected random graph phenomena, where it has allowed
precise descriptions of complex characteristics such as phase transitions, ex-
istence/size of giant components [22, 23], mean component size, cluster sizes
[23], typical distances between nodes [23, 26], etc.

To obtain a prescribed degree distribution, the degree sequence {di} is
chosen as i.i.d. random variables having distribution F . This method allows
great flexibility in terms of the generality of F , which is very important in
the applications we have in mind. The most general of the results presented
here require only that the degree distributions have finite (1+ ǫ)th moment,
and are therefore applicable to a great variety of examples, including the
WWW and the Twitter network.

For a directed random graph there are two distributions that need to
be chosen, the in-degree and out-degree distributions, denoted respectively
F = {fk : k ≥ 0} and G = {gk : k ≥ 0}. The in-degree of a node corresponds
to the number of edges pointing to it, while the out-degree is the number of
edges pointing out. To follow the ideas from [8, 26], we propose to draw the
in-degree and out-degree sequences as i.i.d. observations from distributions
F and G. Unlike the undirected case where the only main problem with this
approach is that the sum of the degrees might not be even, which is nec-
essary to draw an undirected graph, in the directed case the corresponding
condition is that the sum of the in-degrees and the sum of the out-degrees
be the same. Since the probability that two i.i.d. sequences will have the
same sum, even if their means are equal, converges to zero as the number
of nodes grows to infinity, the first part of the paper focuses on how to
construct valid degree sequences without significantly destroying their i.i.d.
properties. Once we have valid degree sequences the problem is how to ob-
tain a simple graph, since the random pairing may produce self-loops and
multiple edges in the same direction. This problem is addressed in two ways,
the first of which consists in showing sufficient conditions under which the
probability of generating a simple graph through random pairing is strictly
positive, which in turn suggests repeating the pairing process until a simple
graph is obtained. The second approach is to simply erase the self-loops and
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multiple edges of the resulting graph. In both cases, one must show that the
degree distributions in the final simple graph remain essentially unchanged.

In particular, if we let f
(n)
k be the probability that a randomly chosen node

from a graph of size n has in-degree k, and let g
(n)
k be the corresponding

probability for the out-degree, then we will show that,

f
(n)
k → fk and g

(n)
k → gk,

as n → ∞. We also prove a similar result for the empirical distributions.
The question of whether a given pair of in- and out-degree sequences

({mi}, {di}) is graphical, i.e., from which it is possible to draw a simple
directed graph, has been recently studied in [13, 18], where algorithms to
realize such graphs have also been analyzed. Random directed graphs with
arbitrary degree distributions have been studied in [23] via generating func-
tions, which can be used to formalize concepts such as “in-components” and
“out-components” as well as to estimate their average size. Models of grow-
ing networks that can be calibrated to mimic the power-law behavior of the
WWW have been analyzed using statistical physics techniques in [16, 17].
The approach followed in this paper focuses on one hand on the generation
of in- and out-degree sequences that are close to being i.i.d. and that are
graphical with high probability, and on the other hand on providing condi-
tions under which a simple graph can be obtained through random pairing.
The directed configuration model with (close to) i.i.d. degree sequences, al-
though not a growing network model, has the advantage of being analytically
tractable and easy to simulate.

The rest of the paper is organized as follows. In Section 2 we introduce a
model to construct in- and out-degree sequences that are very close to being
two independent sequences of i.i.d. random variables having distributions
F and G, respectively, but whose sums are the same; in the same spirit as
the results in [1] we also show that the suggested method produces with
high probability a graphical pair of degree sequences. Section 3 gives a brief
description of the undirected configuration model and Section 4 contains
all our results for the directed version. In Subsection 4.1 we prove sufficient
conditions under which the probability that the directed configuration model
will produce a simple graph will be bounded away from zero, and show
that conditional on the resulting graph being simple, the degree sequences
have asymptotically the correct distributions. In Subsection 4.2 we show
that under very mild conditions, the process of simply erasing self-loops
and multiple edges results in a graph whose degree distributions are still
asymptotically F and G.



150 N. CHEN AND M. OLVERA-CRAVIOTO

2. Graphs and degree sequences. As mentioned in the introduction,
the goal of this paper is to provide an algorithm for generating a random
directed graph with n nodes with the property that its in-degrees and out-
degrees have some prespecified distributions F and G, respectively. More-
over, we would like the resulting graph to be simple, that is, it should not con-
tain self-loops or multiple edges in the same direction. The two models that
we propose are based on the so-called configuration or pairing model, which
produces a random undirected graph from a degree sequence {d1, d2, . . . , dn}.
In [8, 26] the prescribed degree distribution is obtained by drawing the de-
gree sequence {di} as i.i.d. random variables from that distribution. More
details about the configuration model can be found in Section 3 and 4.

Following the same idea of using a sequence of i.i.d. random variables to
generate the degree sequence of an undirected graph, the natural extension
to the directed case would be to draw two i.i.d. sequences from given dis-
tributions F and G. We note that in the undirected setting the two main
problems with this approach are: 1) that the sum of the degrees may be
odd, in which case it is impossible to draw a graph, and 2) that there may
not exist a simple graph having the prescribed degree sequence. The first
problem is easily fixed by either sampling the i.i.d. sequence until its sum
is even (which will happen with probability 1/2 asymptotically), or simply
adding one to the last random number in the sequence. The second problem,
although related to the verification of graphicality criteria (e.g., the Erdös-
Gallai criterion [12]), turns out to be negligible as the number of nodes goes
to infinity, as the work in [1] shows. For directed graphs a graphicality crite-
rion also exists, and the second problem turns out to be negligible for large
graphs just as in the undirected case. Nonetheless, the equivalent of the
first problem is now that the potential in-degree and out-degree sequences
must have the same sum, which is considerably harder to fix. Before pro-
ceeding with the formulation of our proposed algorithm we give some basic
definitions which will be used throughout the paper.

Definition 2.1. We denote by ~G(V, ~E) a directed graph on n nodes or
vertices, V = {v1, v2, . . . , vn}, connected via the set of directed edges ~E.

Definition 2.2. We say that ~G(V, ~E) is simple if any pair of nodes are
connected by at most one edge in each direction, and if there are no edges
in between a node and itself.

Definition 2.3. The in-degree mi, respectively, out-degree di, of node
vi ∈ V is the total number of edges from other nodes to vi, respectively,
from vi to other nodes. The pair of sequences (m,d) = ({m1,m2, . . . ,mn},
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{d1, d2, . . . , dn}) of nonnegative integers is called a bi-degree-sequence if mi

and di correspond to the in-degree and out-degree, respectively, of node vi.

Definition 2.4. A bi-degree-sequence (m,d) is said to be graphical if
there exists a simple directed graph ~G(V, ~E) on the set of nodes V such that
the in-degree and out-degree sequences together form (m,d). In this case
we say that ~G realizes the bi-degree-sequence.

In view of these definitions our goal is to generate the sequences {mi}
and {di} from i.i.d. samples of given distributions F = {fk : k ≥ 0} and
G = {gk : k ≥ 0}, respectively. Both F and G are assumed to be probability
distributions with support on the nonnegative integers with a finite common
mean µ. Note that although the Strong Law of Large Numbers (SLLN)
guarantees that if we simply sample i.i.d. random variables {γ1, . . . , γn} from
F and, independently, i.i.d. random variables {ξ1, . . . , ξn} from G, then

P

(
lim
n→∞

1

n

n∑

i=1

γi = lim
n→∞

1

n

n∑

i=1

ξi

)
= 1,

it is also true that in general

lim
n→∞

P

(
n∑

i=1

γi −
n∑

i=1

ξi = 0

)
= 0.

One potential idea to fix the problem is to sample one of the two sequences,
say the in-degrees, as i.i.d. observations {γ1, . . . , γn} from F and then sample
the second sequence from the conditional distribution G given that its sum is
Γn =

∑n
i=1 γi. This approach has the major drawback that this conditional

distribution may be ill-behaved, in the sense that the probability of the
conditioning event, the sum being equal to Γn, converges to zero in most
cases. It follows that we need a different mechanism to sample the degree
sequences. The precise algorithm we propose is described below; we focus
on first sampling two independent i.i.d. sequences and then add in- or out-
degrees as needed to match their sums.

The following definition will be needed throughout the rest of the paper.

Definition 2.5. We say that a function L(·) is slowly varying at infinity
if limx→∞L(tx)/L(x) = 1 for all fixed t > 0. A distribution function F is said
to be regularly varying with index α > 0, F ∈ R−α, if F (x) = 1 − F (x) =
x−αL(x) with L(·) slowly varying.
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We will also use the notation ⇒ to denote convergence in distribution,
P−→ to denote convergence in probability, and N = {1, 2, 3, . . . } to refer to

the positive integers.

2.1. Algorithm to generate degree sequences. We assume that the target
degree distributions F and G have support on the nonnegative integers and
have common mean µ > 0. Moreover, suppose that there exist slowly varying
functions LF (·) and LG(·) such that

(1) F (x) =
∑

k>x

fk ≤ x−αLF (x) and G(x) =
∑

k>x

gk ≤ x−βLG(x),

for all x ≥ 0, where α, β > 1.
We refer the reader to [4] for all the properties of slowly varying functions

that will be used in the proofs. However, we do point out here that the
tail conditions in (1) ensure that F has finite moments of order s for all
0 < s < α, and G has finite moments of order s for all 0 < s < β. The
constant

κ = min{1− α−1, 1− β−1, 1/2},
will play an important role throughout the paper. The algorithm is given
below.

1. Fix 0 < δ0 < κ.
2. Sample an i.i.d. sequence {γ1, . . . , γn} from distribution F ; let Γn =∑n

i=1 γi.
3. Sample an i.i.d. sequence {ξ1, . . . , ξn} from distribution G; let Ξn =∑n

i=1 ξi.
4. Define ∆n = Γn − Ξn. If |∆n| ≤ n1−κ+δ0 proceed to step 5; otherwise

repeat from step 2.
5. Choose randomly |∆n| nodes {i1, i2, . . . , i|∆n|} without remplacement

and let

Mi = γi + τi, Di = ξi + χi, i = 1, 2, . . . , n,

where

χi =

{
1 if ∆n ≥ 0 and i ∈ {i1, i2, . . . , i∆n},
0 otherwise,

and

τi =

{
1 if ∆n < 0 and i ∈ {i1, i2, . . . , i|∆n|},
0 otherwise.
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Remark. (i) This algorithm constructs a bi-degree-sequence (M,D)
having the property that Ln =

∑n
i=1 Mi =

∑n
i=1Di. (ii) Note that we

have used the capital letters Mi and Di to denote the in-degree and out-
degree, respectively, of node i, as opposed to using the notation mi and
di from Definition 2.4; we do this to emphasize the randomness of the bi-
degree-sequence itself. (iii) Clearly, neither {M1, . . . ,Mn} nor {D1, . . . ,Dn}
are i.i.d. sequences, nor are they independent of each other, but we will
show in the next section that asymptotically as n grows to infinity they
have the same joint distribution as ({γi}, {ξi}). (iv) Regarding the condi-
tion |∆n| ≤ n1−κ+δ0 in step 4, we note that it provides a way to ensure that
the number of in-degrees or out-degrees that we add in step 5 is negligible
with respect to n; the polynomial rate at which we are requiring |∆n|/n to
converge to zero is nevertheless not essential, but it has the advantage of
allowing us to keep the calculations throughout the paper simple. We will
show that the probability of satisfying |∆n| ≤ n1−κ+δ0 converges to one as
n grows in the following section. (v) Note that we always choose to add
degrees, rather than fixing one sequence and always adjust the other one, to
avoid having problems with nodes with in- or out-degree zero.

2.2. Asymptotic behavior of the degree sequence. We now provide some
results about the asymptotic behavior of the bi-degree-sequence obtained
from the algorithm we propose. The first thing we need to prove is that the
algorithm will always end in finite time, and the only step where we need to
be careful is in step 4, since it may not be obvious that we can always draw
two independent i.i.d. sequences satisfying |∆n| ≤ n1−κ+δ0 in a reasonable
amount of time. The first lemma we give establishes that this is indeed the
case by showing that the probability of satisfying condition |∆n| ≤ n1−κ+δ0

converges to one as the size of the graph grows. All the proofs in this section
can be found in Subsection 5.1.

Lemma 2.1. Define Dn = {|∆n| ≤ n1−κ+δ0}, then

lim
n→∞

P (Dn) = 1.

We point out that it is possible to construct a bi-degree-sequence (M,D)
such that |∆n|/n converges to zero in probability under the weaker assump-
tion that α, β ≥ 1 and F and G have finite mean. This weaker condition
would also be necessary, since one can construct examples where α = β = 1
and either F or G have infinite mean, such that ∆n/n converges in distribu-
tion to a non-degenerate random variable. Our condition (1) with α, β > 1
is therefore close to the best possible in terms of ensuring that |∆n|/n con-
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verges to zero, and it is necessary to obtain the polynomial rate n−κ+δ0 ,
which greatly simplifies the calculations throughout the paper.

Since with our proposed construction the sums of the in-degrees and out-
degrees are the same, we can always draw a graph, but this is not enough to
guarantee that we can draw a simple graph. In other words, we need to deter-
mine with what probability will the bi-degree-sequence (M,D) be graphical,
and to do this we first need an appropriate criterion, e.g., a directed ver-
sion of the Erdös-Gallai criterion for undirected graphs. The following result
(Corollary 1 on p. 110 in [3]) gives necessary and sufficient conditions for a
bi-degree-sequence to be graphical; the original statement is for more gen-
eral p-graphs, where up to p parallel edges in the same direction are allowed.
The notation |A| denotes the cardinality of set A.

Theorem 2.2. Given a set of n vertices V = {v1, . . . , vn}, having bi-
degree-sequence (m,d) = ({m1, . . . ,mn}, {d1, . . . , dn}), a necessary and suf-
ficient condition for (m,d) to be graphical is

1.

n∑

i=1

mi =

n∑

i=1

di, and

2.

n∑

i=1

min{di, |A− {vi}|} ≥
∑

vi∈A
mi for any A ⊆ V .

We now state a result that shows that for large n, the bi-degree-sequence
(M,D) constructed in Subsection 2.1 is with high probability graphical.
Related results for undirected graphs can be found in [1], which includes the
case when the degree distribution has infinite mean.

Theorem 2.3. For the bi-degree-sequence (M,D) constructed in Sec-
tion 2.1 we have

lim
n→∞

P ((M,D) is graphical) = 1.

The second property of (M,D) that we want to show is that despite
the fact that the sequences {Mi} and {Di} are no longer independent nor
individually i.i.d., they are still asymptotically so as the number of vertices
n goes to infinity. The intuition behind this result is that the number of
degrees that need to be added to one of the i.i.d. sequences {γi} or {ξi} to
match their sum is small compared to n, and therefore the sequences {Mi}
and {Di} are almost i.i.d. and independent of each other. This feature makes
the bi-degree-sequence (M,D) we propose an approximate equivalent of the
i.i.d. degree sequence considered in [1, 8, 26] for undirected graphs.
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Theorem 2.4. The bi-degree-sequence (M,D) constructed in Subsec-
tion 2.1 satisfies that for any fixed r, s ∈ N,

(Mi1 , . . . ,Mir ,Dj1 , . . . ,Djs) ⇒ (γ1, . . . , γr, ξ1, . . . , ξs)

as n → ∞, where {γi} and {ξi} are independent sequences of i.i.d. random
variables having distributions F and G, respectively.

To end this section, we give a result that establishes regularity conditions
of the bi-degree-sequence (M,D) which will be important in the sequel.

Proposition 2.5. The bi-degree-sequence (M,D) constructed in Sub-
section 2.1 satisfies

1

n

n∑

k=1

1(Mk = i,Dk = j)
P−→ figj , for all i, j ∈ N ∪ {0},

1

n

n∑

i=1

Mi
P−→ E[γ1],

1

n

n∑

i=1

Di
P−→ E[ξ1], and

1

n

n∑

i=1

MiDi
P−→ E[γ1ξ1],

as n → ∞, and provided E[γ21 + ξ21 ] < ∞,

1

n

n∑

i=1

M2
i

P−→ E[γ21 ], and
1

n

n∑

i=1

D2
i

P−→ E[ξ21 ],

as n → ∞.

3. The undirected configuration model. In the previous section we
introduced a model for the generation of a bi-degree-sequence (M,D) that
is close to being a pair of independent sequences of i.i.d. random variables,
but yet has the property of being graphical with probability close to one
as the size of the graph goes to infinity. We now turn our attention to the
problem of obtaining a realization of such sequence, in particular, of drawing
a simple graph having (M,D) as its bi-degree-sequence.

The approach that we follow is a directed version of the configuration
model. The configuration, or pairing model, was introduced in [6, 27], al-
though earlier related ideas based on symmetric matrices with {0, 1} entries
go back to the early 70’s; see [7, 28] for a survey of the history as well as ad-
ditional references. The configuration model is based on the following idea:
given a degree sequence d = {d1, . . . , dn}, to each node vi, 1 ≤ i ≤ n, assign
di stubs or half-edges, and then pair half-edges to form an edge in the graph
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by randomly selecting with equal probability from the remaining set of un-
paired half-edges. This procedure results in a multigraph on n nodes having
d as its degree sequence, where the term multigraph refers to the possibility
of self-loops and multiple edges. Although this algorithm does not produce
a multigraph uniformly chosen at random from the set of all multigraphs
having degree sequence d, a simple graph uniformly chosen at random can
be obtained by choosing a pairing uniformly at random and discarding the
outcome if it has self-loops or multiple edges [28]. The question that be-
comes important then is to estimate the probability with which the pairing
model will produce a simple graph. For the undirected graph setting we have
described, such results were given in [2, 6, 21, 24, 27] for regular d-graphs
(graphs where each node has exactly degree d), and in [19, 21, 25] for general
graphical degree sequences. From the previous discussion, it should be clear
that it is important to determine conditions under which the probability of
obtaining a simple graph in the pairing model is bounded away from zero as
n → ∞. Such conditions are essentially bounds on the rate of growth of the
maximum (minimum) degree and/or the existence of certain limits (see, e.g.,
[19, 21, 25]). The set of conditions given below is taken from [25], and we
include it here as a reference for the directed version discussed in this paper.

Condition 3.1. Given a degree sequence d = {d1, . . . , dn}, let D[n] be
the degree of a randomly chosen node in the corresponding undirected graph,
i.e.,

P (D[n] = k) =
1

n

n∑

i=1

1(di = k).

1. Weak convergence. There exists a finite random variable D taking
values on the positive integers such that

D[n] ⇒ D, n → ∞.

2. Convergence of the first moment.

lim
n→∞

E[D[n]] = E[D].

3. Convergence of the second moment.

lim
n→∞

E[(D[n])2] = E[D2].

Remark. It is straightforward to verify that if the degree sequence is
chosen as an i.i.d. sample {D1, . . . ,Dn} from some distribution F on the
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positive integers having finite first moment, then parts (a) and (b) of Con-
dition 3.1 are satisfied, and if F has finite second moment then also part (c)
is satisfied; the adjustment made to ensure that the sum of the degrees is
even, if needed, can be shown to be negligible.

Condition 3.1 guarantees that the probability of obtaining a simple graph
in the pairing model is bounded away from zero (see, e.g., [25]), in which
case we can obtain a uniformly simple realization of the (graphical) degree
sequence {di} by repeating the random pairing until a simple graph is ob-
tained. When part (c) of Condition 3.1 fails, then an alternative is to simply
erase the self-loops and multiple edges. These two approaches give rise to
the repeated an erased configuration models, respectively.

4. The directed configuration model. Having given a brief descrip-
tion of the configuration model for undirected graphs, we will now discuss
how to adapt it to draw directed graphs. The idea is basically the same, given
a bi-degree-sequence (m,d), to each node vi assign mi inbound half-edges
and di outbound half-edges; then, proceed to match inbound half-edges to
outbound half-edges to form directed edges. To be more precise, for each
unpaired inbound half-edge of node vi choose randomly from all the avail-
able unpaired outbound half-edges, and if the selected outbound half-edge
belongs to node, say, vj , then add a directed edge from vj to vi to the graph;
proceed in this way until all unpaired inbound half-edges are matched. The
following result shows that conditional on the graph being simple, it is uni-
formly chosen among all simple directed graphs having bi-degree-sequence
(m,d). This directed version of the configuration model had previously been
studied in [14], along with the result about its uniformity; we give here a
short proof for completeness. All the proofs of Section 4 can be found in
Subsection 5.2.

Proposition 4.1. Given a graphical bi-degree-sequence (m,d), generate
a directed graph according to the directed configuration model. Then, condi-
tional on the obtained graph being simple, it is uniformly distributed among
all simple directed graphs having bi-degree-sequence (m,d).

The question is now under what conditions will the probability of obtain-
ing a simple graph be bounded away from zero as the number of nodes, n,
goes to infinity. When this probability is bounded away from zero we can re-
peat the random pairing until we draw a simple graph: the repeated model;
otherwise, we can always erase the self-loops and multiple edges in the same
direction to obtain a simple graph: the erased model. These two models are
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discussed in more detail in the following two subsections, where we also pro-
vide sufficient conditions under which the probability of obtaining a simple
graph will be bounded away from zero.

We end this section by mentioning that another important line of prob-
lems related to the drawing of simple graphs (directed or undirected) is the
development of efficient simulation algorithms, see for example the recent
work in [5] using importance sampling techniques for drawing a simple graph
with prescribed degree sequence {di}; similar ideas should also be applicable
to the directed model.

4.1. Repeated directed configuration model. In this section we analyze
the directed configuration model using the bi-degree-sequence (M,D) con-
structed in Subsection 2.1. In order to do so we will first need to establish suf-
ficient conditions under which the probability that the directed configuration
model produces a simple graph is bounded away from zero as the number of
nodes goes to infinity. Since this property does not directly depend on the
specific bi-degree-sequence (M,D), we will prove the result for general bi-
degree-sequences (m,d) satisfying an analogue of Condition 3.1. As one may
expect, we will require the existence of certain limits related to the (joint)
distribution of the in-degree and out-degree of a randomly chosen node.
Also, since the sequences {mi} and {di} need to have the same sum, we pre-
fer to consider a sequence of bi-degree-sequences, i.e., {(mn,dn)}n∈N where
(mn,dn) = ({mn1, . . . ,mnn}, {dn1, . . . , dnn}), since otherwise the equal sum
constraint would greatly restrict the type of sequences we can use. For exam-
ple, suppose that the bi-degree sequence ({m1, . . . ,mi}, {d1, . . . , di}) satis-
fies the equal sums condition, then the only possible choice for the (i+1)th
node would be mi+1 = di+1, so a bi-degree-sequence satisfying the equal
sums condition would need to have mi = di for all i ∈ N. Note that for the
undirected case the equivalent condition would be to require that the sum
of the degrees is always even, a problem that can be avoided by simply ig-
noring those values of n for which the sum of {d1, . . . , dn} is odd (e.g., in the
case of i.i.d. degrees, roughly half of the values of n). The use of a sequence
of degree sequences rather than a single degree sequence is nevertheless not
new, even for undirected graphs (see, e.g., [22]).

The corresponding version of Condition 3.1 for the directed case is given
below.

Condition 4.1. Given a sequence of bi-degree-sequences {(mn,dn)}n∈N
satisfying

n∑

i=1

mni =
n∑

i=1

dni for all n,
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let (M [n],D[n]) denote the in-degree and out-degree of a randomly chosen
node, i.e.,

P ((M [n],D[n]) = (i, j)) =
1

n

n∑

k=1

1(mnk = i, dnk = j).

1. Weak convergence. There exist finite random variables γ and ξ taking
values on the nonnegative integers and satisfying E[γ] = E[ξ] > 0 such
that

(M [n],D[n]) ⇒ (γ, ξ), n → ∞.

2. Convergence of the first moments.

lim
n→∞

E[M [n]] = E[γ] and lim
n→∞

E[D[n]] = E[ξ].

3. Convergence of the covariance.

lim
n→∞

E[M [n]D[n]] = E[γξ].

4. Convergence of the second moments.

lim
n→∞

E[(M [n])2] = E[γ2] and lim
n→∞

E[(D[n])2] = E[ξ2].

We now state a result that says that the number of self-loops and the
number of multiple edges produced by the random pairing converge jointly,
as n → ∞, to a pair of independent Poisson random variables. As a corollary
we obtain that the probability of the resulting graph being simple converges
to a positive number, and is therefore bounded away from zero. The proof
is an adaptation of the proof of Proposition 7.9 in [25].

Consider the multigraph obtained through the directed configuration model
from the bi-degree-sequence (mn,dn), and let Sn be the number of self-loops
and Tn be the number of multiple edges in the same direction, that is, if
there are k ≥ 2 (directed) edges from node vi to node vj , they contribute
(k − 1) to Tn.

Proposition 4.2. (Poisson limit of self-loops and multiple edges) If
{(mn,dn)}n∈N satisfies Condition 4.1 with E[γ] = E[ξ] = µ > 0, then

(Sn, Tn) ⇒ (S, T )

as n → ∞, where S and T are two independent Poisson random variables
with means

λ1 =
E[γξ]

µ
and λ2 =

E[γ(γ − 1)]E[ξ(ξ − 1)]

2µ2
,

respectively.



160 N. CHEN AND M. OLVERA-CRAVIOTO

Since the probability of the graph being simple is P (Sn = 0, Tn = 0), we
obtain as a consequence the following theorem.

Theorem 4.3. Under the assumptions of Proposition 4.2,

lim
n→∞

P (graph obtained from (mn,dn) is simple) = e−λ1−λ2 > 0.

It is clear from Proposition 2.5 that Condition 4.1 is satisfied by the bi-
degree-sequence (M,D) proposed in Subsection 2.1 whenever F and G have
finite variance. This implies that one way of obtaining a simple directed
graph on n nodes is by first sampling the bi-degree-sequence (M,D) ac-
cording to Subsection 2.1, then checking if it is graphical, and if it is, use
the directed pairing model to draw a graph, discarding any realizations that
are not simple. Alternatively, since the probability of (M,D) being graphi-
cal converges to one, then one could skip the verification of graphicality and
re-sample (M,D) each time the pairing needs to be repeated. The algorithm
is summarized below:

1. Generate bi-degree-sequence according to Section 2.1, with F and G
having finite variance.

2. (Optional) Verify graphicality using Theorem 2.2.
3. Randomly pair the in-degrees and out-degrees.
4. If the resulting graph is not simple, repeat from step 3 (or from step

1 if skipping step 2).

The last thing we show in this section is that the degree distributions of
the resulting simple graph will have with high probability the prescribed de-
gree distributions F andG, as required. More specifically, if we let (M(r),D(r))
be the bi-degree-sequence of the final simple graph obtained through the re-
peated directed configuration model with bi-degree-sequence (M,D), then
we will show that the joint distribution

h(n)(i, j) =
1

n

n∑

k=1

P (M
(r)
k = i,D

(r)
k = j) i, j = 0, 1, 2, . . . ,

converges to figj , and the empirical distributions,

f̂k
(n)

=
1

n

n∑

i=1

1(M
(r)
i = k) and ĝk

(n) =
1

n

n∑

i=1

1(D
(r)
i = k) k = 0, 1, 2, . . . ,

converge in probability to fk and gk, respectively. The same result was shown
in [8] for the undirected case with i.i.d. degree sequence {Di}.
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Proposition 4.4. For the repeated directed configuration model with
bi-degree-sequence (M,D), as constructed in Subsection 2.1 with F and G
having finite variance, we have:

1. h(n)(i, j) → figj as n → ∞, i, j = 0, 1, 2, . . . , and
2. for all k = 0, 1, 2, . . . ,

f̂k
(n) P−→ fk and ĝk

(n) P−→ gk, n → ∞.

Remark. Note that by the continuous mapping theorem, (a) implies
that the marginal distributions of the in-degrees and out-degrees,

f (n)(i) =
1

n

n∑

k=1

P (M
(r)
k = i) and g(n)(j) =

1

n

n∑

k=1

P (D
(r)
k = j),

converge to fi and gj , respectively. The same arguments used in the proof
also give that the joint empirical distribution converges to figj in probability.

4.2. Erased directed configuration model. In this section we consider the
erased directed configuration model, which is particularly useful when the
probability of drawing a simple graph converges to zero as the number of
nodes increases, which could happen, for example, when F or G doesn’t
have finite variance and Condition 4.1 (d) fails. Given a bi-degree-sequence
(m,d), the erased model consists in first obtaining a multigraph according
to the directed configuration model and then erase all self-loops and merge
multiple edges in the same direction into a single edge, with the result being
a simple graph. Note that the graph obtained through this process no longer
has (m,d) as its bi-degree-sequence. The algorithm is summarized below:

1. Generate bi-degree-sequence according to Section 2.1.
2. Randomly pair the in-degrees and out-degrees.
3. Erase self-loops and merge multiple edges in the same direction.

As for the repeated model, let (M(e),D(e)) be the bi-degree-sequence of
the simple graph obtained through the erased directed configuration model
with bi-degree-sequence (M,D). Define the joint distribution

h(n)(i, j) =
1

n

n∑

k=1

P (M
(e)
k = i,D

(e)
k = j) i, j = 0, 1, 2, . . . ,

and the empirical distributions,

f̂k
(n)

=
1

n

n∑

i=1

1(M
(e)
i = k) and ĝk

(n) =
1

n

n∑

i=1

1(D
(e)
i = k) k = 0, 1, 2, . . . .
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The following result is the analogue of Proposition 4.4 for the erased model;
note that in this case we do not require F and G to have finite variance.

Proposition 4.5. For the erased directed configuration model with bi-
degree-sequence (M,D), as constructed in Subsection 2.1, we have:

1. h(n)(i, j) → figj as n → ∞, i, j = 0, 1, 2, . . . , and
2. for all k = 0, 1, 2, . . . ,

f̂k
(n) P−→ fk and ĝk

(n) P−→ gk, n → ∞.

5. Proofs. In this section we give the proofs of all the results in the pa-
per. We divide the proofs into two subsections, one containing those belong-
ing to Section 2 and those belonging to Section 4. Throughout the remainder
of the paper we use the following notation: g(x) ∼ f(x) if limx→∞ g(x)/f(x) =
1, g(x) = O(f(x)) if lim supx→∞ g(x)/f(x) < ∞, and g(x) = o(f(x)) if
limx→∞ g(x)/f(x) = 0.

5.1. Degree Sequences. This subsection contains the proofs of Lemma 2.1,
Theorems 2.3 and 2.4, and Proposition 2.5.

Proof of Lemma 2.1. Let Zi = γi− ξi and note that the {Zi} are i.i.d.
mean zero random variables. If E[Z2

1 ] < ∞, then Chebyshev’s inequality
gives

P (Dc
n) = P

(∣∣∣∣∣

n∑

i=1

Zi

∣∣∣∣∣ > n1/2+δ0

)
≤ nVar(Z1)

n1+2δ0
= O(n−2δ0) = o(1)

as n → ∞.
Suppose now that E[Z2

1 ] = ∞, which implies that κ = 1−max{α−1, β−1} ∈
(0, 1/2]. Let θ = max{α−1, β−1}, define tn = nθ+ǫ, 0 < ǫ < min{δ0, θ−1−θ},
and let {Z̃i} be a sequence of i.i.d. random variables having distribution
P (Z̃1 ≤ x) = P (Z1 ≤ x||Z1| ≤ tn). Then,

P

(∣∣∣∣∣

n∑

i=1

Zi

∣∣∣∣∣ > n1−κ+δ0

)
= P

(∣∣∣∣∣

n∑

i=1

Z̃i

∣∣∣∣∣ > n1−κ+δ0

)
P (|Z1| ≤ tn)

n

+ P

(∣∣∣∣∣

n∑

i=1

Zi

∣∣∣∣∣ > n1−κ+δ0 , max
1≤i≤n

|Zi| > tn

)

≤ P

(∣∣∣∣∣

n∑

i=1

Z̃i − nE[Z̃1]

∣∣∣∣∣+ n|E[Z̃1]| > n1−κ+δ0

)

+ P

(
max
1≤i≤n

|Zi| > tn

)
.
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By the union bound,

P

(
max
1≤i≤n

|Zi| > tn

)
≤ nP (|Z1| > tn) ≤ nP (γ1 + ξ1 > tn)

≤ nP (γ1 > tn/2) + nP (ξ1 > tn/2)

≤ n(tn/2)
−αLF (tn/2) + n(tn/2)

−βLG(tn/2)

= O
(
n1−α(θ+ǫ)LF (tn) + n1−β(θ+ǫ)LG(tn)

)

= O
(
n−αǫLF (tn) + n−βǫLG(tn)

)

as n → ∞, which converges to zero by basic properties of slowly varying
functions (see, e.g., Proposition 1.3.6 in [4]). Next, note that since E[Z1] = 0,

|E[Z̃1]| =
|E[Z11(|Z1| > tn)]|

P (|Z1| ≤ tn)

≤ E[|Z1|1(|Z1| > tn)]

P (|Z1| ≤ tn)

≤ (1 + o(1))

(
tnP (|Z1| > tn) +

∫ ∞

tn

P (|Z1| > z)dz

)
,

where in the last inequality we used integration by parts for the numerator
and the fact that P (|Z1| ≤ tn) = 1+o(1) as n → ∞. To estimate the integral
note that
∫ ∞

tn

P (|Z1| > z)dz

≤
∫ ∞

tn

(P (γ1 > z/2) + P (ξ1 > z/2))dz

≤ 2

∫ ∞

tn/2

(
u−αLF (u) + u−βLG(u)

)
du

∼ 2
(
(α− 1)−1(tn/2)

−α+1LF (tn/2) + (β − 1)−1(tn/2)
−β+1LG(tn/2)

)

= O
(
n−(α−1)(θ+ǫ)LF (tn) + n−(β−1)(θ+ǫ)LG(tn)

)
,

where in the third step we used Proposition 1.5.10 in [4]. Now note that

min{(α − 1)(θ + ǫ), (β − 1)(θ + ǫ)} = (θ−1 − 1)(θ + ǫ) = κ+ ǫ(θ−1 − 1),

from where it follows that

|E[Z̃1]| = O
(
n−κ−ǫ(θ−1−1)(LF (tn) + LG(tn))

)
= o

(
n−κ+δ0

)
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as n → ∞. In view of this, we can use Chebyshev’s inequality to obtain

(2) P

(∣∣∣∣∣

n∑

i=1

Z̃i − nE[Z̃1]

∣∣∣∣∣+ n|E[Z̃1]| > n1−κ+δ0

)
≤ Var(Z̃1)

n1−2(κ−δ0)(1 + o(1))
.

Finally, to see that this last bound converges to zero note that

Var(Z̃1) ≤ E[Z̃2
1 ] =

1

P (|Z1| ≤ tn)
E[Z2

11(|Z1| ≤ tn)]

≤ (1 + o(1))E
[
|Z1|θ

−1−ǫ
]
t2−θ−1+ǫ
n ,

where we used again the observation that P (|Z1| ≤ tn) = 1 + o(1) and the
inequality

|Z1|2 = |Z1|θ
−1−ǫ|Z1|2−θ−1+ǫ ≤ |Z1|θ

−1−ǫt2−θ−1+ǫ
n

for |Z1| ≤ tn. Next note that by the remark following (1), E[|Z1|θ
−1−ǫ] < ∞.

Hence, we conclude that (2) is of order

O
(
t2−θ−1+ǫ
n n2(κ−δ0)−1

)
= O

(
n(θ+ǫ)(2−θ−1+ǫ)+2(κ−δ0)−1

)

= o
(
n−2(δ0−ǫ)

)
= o(1)

as n → ∞. This completes the proof.

Before giving the proof of Theorem 2.3 we will need the following prelim-
inary lemma.

Lemma 5.1. Let {X1, . . . ,Xn} be an i.i.d. sequence of nonnegative ran-
dom variables having distribution function V , and let X(i) denote the ith
order statistic. Then, for any k ≤ n,

n∑

i=n−k+1

E
[
X(i)

]
≤
∫ ∞

0
min

{
nV (x), k

}
dx.

Proof. Note that

E
[
X(i)

]
=

∫ ∞

0
P (X(i) > x) dx =

∫ ∞

0

n∑

j=n−i+1

(
n

j

)
V (x)jV (x)n−jdx,
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from where it follows
n∑

i=n−k+1

E
[
X(i)

]
=

n∑

i=n−k+1

n∑

j=n−i+1

(
n

j

)∫ ∞

0
V (x)jV (x)n−jdx

=

n∑

j=1

min{j, k}
(
n

j

)∫ ∞

0
V (x)jV (x)n−jdx

=

∫ ∞

0
E
[
min{B(n, V (x)), k}

]
dx,

where B(n, p) is a Binomial(n, p) random variable. Since the function u(t) =
min{t, k} is concave, Jensen’s inequality gives

E
[
min{B(n, V (x)), k}

]
≤ min

{
E[B(n, V (x))], k

}
= min

{
nV (x), k

}
.

Proof of Theorem 2.3. Since by construction
∑n

i=1Mi =
∑n

i=1Di, it
follows from Theorem 2.2 that it suffices to show that

lim
n→∞

P


max

A⊆V



∑

vi∈A
Mi −

n∑

i=1

min{Di, |A− {vi}|}


 > 0


 = 0.

Fix 0 < ǫ < min{β−1, α−1, 1/2}, define kn = ⌊n(1+ǫ)/β⌋, and use the union
bound to obtain

P


max

A⊆V


∑

vi∈A
Mi −

n∑

i=1

min{Di, |A− {vi}|}


 > 0




≤ P


 max

A⊆V,|A|≤kn


∑

vi∈A
Mi −

n∑

i=1

min{Di, |A− {vi}|}


 > 0


(3)

+ P


 max

A⊆V,|A|>kn


∑

vi∈A
Mi −

n∑

i=1

min{Di, |A− {vi}|}


 > 0


 .(4)

By conditioning on how many of the Di are larger than kn we obtain that
(4) is bounded by

P


 max

A⊆V,|A|>kn


∑

vi∈A
Mi −

n∑

i=1

min{Di, |A− {vi}|}


 > 0, max

1≤i≤n
Di ≤ kn




+ P

(
max
1≤i≤n

Di > kn

)
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≤ P


 max

A⊆V,|A|>kn


∑

vi∈A
Mi −

n∑

i=1

Di


 > 0


+ P

(
max
1≤i≤n

Di > kn

)

= P

(
max
1≤i≤n

(ξi + χi) > kn

∣∣∣∣Dn

)
,

where Dn was defined in Lemma 2.1, and we used the fact that, by con-
struction, Di has the same distribution as ξi + χi conditional on the event
Dn. (We use this observation several times throughout the paper.) Now note
that by the union bound we have

P

(
max
1≤i≤n

(ξi + χi) > kn

∣∣∣∣Dn

)
≤ 1

P (Dn)
· P
(
max
1≤i≤n

(ξi + χi) > kn

)

≤ 1

P (Dn)

n∑

i=1

P (ξi + χi > kn)

≤ 1

P (Dn)
· n (kn − 1)−β LG (kn − 1)

= O
(
n−ǫLG

(
n(1+ǫ)/β

))
= o(1),

as n → ∞, where the last step follows from Lemma 2.1 and basic properties
of slowly varying functions (see, e.g., Chapter 1 in [4]).

Next, to analyze (3) note that we can write it as

P


 max

A⊆V,|A|≤kn


∑

vi∈A
Mi −

n∑

i=1

min{Di, |A− {vi}|}


 > 0




≤ P


max



 max

A⊆V, 2≤|A|≤kn



∑

vi∈A
Mi −

n∑

i=1

min{Di, 1}


 ,

max
1≤j≤n

(
Mj −

n∑

i=1

min{Di, |{vj} − {vi}|}
)}

> 0

)

= P


max





n∑

i=n−kn+1

M (i), (M +D)(n)



−

n∑

i=1

min{Di, 1} > 0


 ,

where x(i) is the ith smallest of {x1, . . . , xn}. Now let a0 = E[min{ξ1, 1}] =
G(0) > 0 and split the last probability as follows

P


max





n∑

i=n−kn+1

M (i), (M +D)(n)



−

n∑

i=1

min{Di, 1} > 0
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≤ P


max





n∑

i=n−kn+1

M (i), (M +D)(n)



 > a0n− n1/2+ǫ,(5)

n∑

i=1

min{Di, 1} ≥ a0n− n1/2+ǫ

)

+ P

(
n∑

i=1

min{Di, 1} < a0n− n1/2+ǫ

)
.(6)

To bound (6) use Di ≥ ξi for all i = 1, . . . , n and Chebyshev’s inequality to
obtain

P

(
n∑

i=1

min{Di, 1} < a0n− n1/2+ǫ

)

≤ 1

P (Dn)
P

(
n∑

i=1

(a0 −min{ξi, 1}) > n1/2+ǫ

)

≤ nVar(min{ξ1, 1})
P (Dn)n1+2ǫ

= O
(
n−2ǫ

)
,

while the union bound gives that (5) is bounded by

P


max





n∑

i=n−kn+1

M (i), (M +D)(n)



 > bn




≤ P




n∑

i=n−kn+1

M (i) > bn


+ P

(
(M +D)(n) > bn

)
,

where bn = a0n− n1/2+ǫ. For the second probability the union bound again
gives

P
(
(M +D)(n) > bn

)

≤ P
(
M (n) > bn/2

)
+ P

(
D(n) > bn/2

)

≤ 1

P (Dn)

(
P

(
max
1≤i≤n

(γi + τi) > bn/2

)
+ P

(
max
1≤i≤n

(ξi + χi) > bn/2

))

≤ n

P (Dn)
(P (γ1 + τ1 > bn/2) + P (ξ1 + χ1 > bn/2))

≤ n

P (Dn)

(
(bn/2− 1)−αLF (bn/2− 1) + (bn/2− 1)−βLG(bn/2− 1)

)

= O
(
n−α+1LF (n) + n−β+1LG(n)

)
= o(1)
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as n → ∞. Finally, by Markov’s inequality and Lemma 5.1,

P




n∑

i=n−kn+1

M (i) > bn




≤ 1

bn

n∑

i=n−kn+1

E
[
M (i)

]
≤ 1

bnP (Dn)

n∑

i=n−kn+1

E[γ(i) + 1]

≤ 1

bnP (Dn)

(∫ ∞

0
min

{
nF (x), kn

}
dx+ kn

)

= a−1
0 (1 + o(1))

∫ ∞

0
min

{
F (x), n(1+ǫ)/β−1

}
dx+ o(1)

≤ a−1
0 (1 + o(1))

(
n(1+ǫ)/β−1 +

∫ ∞

1
min

{
Kx−α+ǫ, n(1+ǫ)/β−1

}
dx

)
+ o(1)

= o(1) +O

(∫ ∞

1
min

{
x−α+ǫ, n(1+ǫ)/β−1

}
dx

)

as n → ∞, where K = supt≥1 t
−ǫLF (t) < ∞. Since

∫ ∞

1
min

{
x−α+ǫ, n(1+ǫ)/β−1

}
dx

= n(1+ǫ)/β−1(n(β−1−ǫ)/(β(α−ǫ)) − 1) +

∫ ∞

n(β−1−ǫ)/(β(α−ǫ))

x−α+ǫdx

= O
(
n−(β−1−ǫ)(α−1−ǫ)/(β(α−ǫ))

)
= o(1),

the proof is complete.

The last two proofs of this section are those of Theorem 2.4 and Propo-
sition 2.5.

Proof of Theorem 2.4. Let u : Nr+s → [−H,H], H > 0, be a contin-
uous bounded function, and let ∆n,Dn be defined as in Lemma 2.1. Then,

|E [u(Mi1 , . . . ,Mir ,Dj1 , . . . ,Djs)]− E [u(γ1, . . . , γr, ξ1, . . . , ξs)]|
= |E [u(γi1 + τi1 , . . . , γir + τir , ξj1 + χj1 , . . . , ξjs + χjs)|Dn]

−E [u(γi1 , . . . , γir , ξj1 , . . . , ξjs)]|
≤ |E [u(γi1 + τi1 , . . . , γir + τir , ξj1 + χj1 , . . . , ξjs + χjs)(7)

−u(γi1 , . . . , γir , ξj1 , . . . , ξjs)|Dn]|
+ |E [u(γi1 , . . . , γir , ξj1 , . . . , ξjs)|Dn]− E [u(γ1, . . . , γr, ξ1, . . . , ξs)]| .(8)
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Let T =
∑r

t=1 τit +
∑s

t=1 χjs . Since u is bounded then (7) is smaller than or
equal to

E [ |u(γi1 + τi1 , . . . , γir + τir , ξj1 + χj1 , . . . , ξjs + χjs)

−u(γi1 , . . . , γir , ξj1 , . . . , ξjs)| 1 (T ≥ 1)| Dn]

≤ 2HP (T ≥ 1| Dn) ≤ 2H

(
r∑

t=1

P (τit = 1|Dn) +
s∑

t=1

P (χjt = 1|Dn)

)

=
2H

P (Dn)

(
r∑

t=1

E[1(τit = 1,Dn)] +

s∑

t=1

E[1(χjt = 1,Dn)]

)
.

To compute the last expectations let Fn = σ(γ1, . . . , γn, ξ1, . . . , ξn) be the
σ-algebra generated by the γi’s and ξi’s and note that

E[1(χjt = 1,Dn)] = E[1(Dn)E[1(χjt = 1)|Fn]]

= E

[
1(Dn,∆n ≥ 0)

( n−1
∆n−1

)
( n
∆n

)
]
= E

[
1(Dn,∆n ≥ 0)

∆n

n

]
,

and symmetrically,

E[1(τit = 1,Dn)] = E

[
1(Dn,∆n < 0)

|∆n|
n

]
,

from where it follows that (7) is bounded by

2H

(
r∑

t=1

E

[
∆n

n
1(∆n ≥ 0)

∣∣∣∣Dn

]
+

s∑

t=1

E

[ |∆n|
n

1(∆n < 0)

∣∣∣∣Dn

])

≤ 2H(r + s)n−κ+δ0 = o(1)

as n → ∞. To analyze (8) we first note that by Lemma 2.1, P (Dn) → 1 as
n → ∞, hence

E [u(γi1 , . . . , γir , ξj1 , . . . , ξjs)|Dn] =
1

P (Dn)
E [u(γ1, . . . , γr, ξ1, . . . , ξs)1(Dn)]

= E [u(γ1, . . . , γr, ξ1, . . . , ξs)1(Dn)] + o(1).

Therefore, (8) is equal to

|E [u(γ1, . . . , γr, ξ1, . . . , ξs)1(Dc
n)] + o(1)| ≤ HP (Dc

n) + o(1) → 0

as n → ∞, which completes the proof.
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Proof of Proposition 2.5. Fix ǫ > 0 and let Dn = {|∆n| ≤ n1−κ+δ0}.
For the first limit fix i, j = 0, 1, 2, . . . and note that by the union bound,

P

(∣∣∣∣∣
1

n

n∑

k=1

1(Mk = i,Dk = j)− figj

∣∣∣∣∣ > ǫ

)

≤ P

(∣∣∣∣∣
1

n

n∑

k=1

(1(γk + τk = i, ξk + χk = j)− 1(γk = i, ξk = j))

∣∣∣∣∣ > ǫ/2

∣∣∣∣∣Dn

)

+ P

(∣∣∣∣∣
1

n

n∑

k=1

1(γk = i, ξk = j)− figj

∣∣∣∣∣ > ǫ/2

∣∣∣∣∣Dn

)

≤ P

(
1

n

n∑

k=1

|1(γk + τk = i, ξk + χk = j) − 1(γk = i, ξk = j))| > ǫ/2

∣∣∣∣∣Dn

)

+
1

P (Dn)n(ǫ/2)2
Var(1(γ1 = i, ξ1 = j)),

where in the last step we used Chebyshev’s inequality. Clearly, Var(1(γ1 =
i, ξ1 = j)) = figj(1− figj), and since by Lemma 2.1 P (Dn) → 1 as n → ∞,
then the second term converges to zero. To analyze the first term note that
at most one of χk or τk can be one, hence,

P

(
1

n

n∑

k=1

|1(γk + τk = i, ξk + χk = j)− 1(γk = i, ξk = j))| > ǫ/2

∣∣∣∣∣Dn

)

≤ P

(
1

n

n∑

k=1

(|1(ξk + χk = j)− 1(ξk = j)|

+ |1(γk + τk = i)− 1(γk = i)|) > ǫ/2

∣∣∣∣∣Dn

)

≤ P

(
1

n

n∑

k=1

(1(χk = 1) + 1(τk = 1)) > ǫ/2

∣∣∣∣∣Dn

)

= P

( |∆n|
n

> ǫ/2

∣∣∣∣Dn

)

≤ 1(n−κ+δ0 > ǫ/2) → 0

as n → ∞.
Next, for the average degrees we have

P

(∣∣∣∣∣
1

n

n∑

i=1

Mi − E[γ1]

∣∣∣∣∣ > ǫ

)
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= P

(∣∣∣∣∣
1

n

n∑

i=1

(γi + τi)− E[γ1]

∣∣∣∣∣ > ǫ

∣∣∣∣∣Dn

)

≤ P

(∣∣∣∣∣
1

n

n∑

i=1

γi − E[γ1]

∣∣∣∣∣+
|∆n|
n

> ǫ

∣∣∣∣∣Dn

)

≤ 1

P (Dn)
P

(∣∣∣∣∣
1

n

n∑

i=1

γi − E[γ1]

∣∣∣∣∣+ n−κ+δ0 > ǫ

)
,(9)

symmetrically,

P

(∣∣∣∣∣
1

n

n∑

i=1

Di − E[ξ1]

∣∣∣∣∣ > ǫ

)

≤ 1

P (Dn)
P

(∣∣∣∣∣
1

n

n∑

i=1

ξi − E[ξ1]

∣∣∣∣∣+ n−κ+δ0 > ǫ

)
,(10)

and since τiχi = 0 for all 1 ≤ i ≤ n,

P

(∣∣∣∣∣
1

n

n∑

i=1

MiDi − E[γ1ξ1]

∣∣∣∣∣ > ǫ

)

= P

(∣∣∣∣∣
1

n

n∑

i=1

(γiξi + τiξi + γiχi − E[γ1ξ1]

∣∣∣∣∣ > ǫ

∣∣∣∣∣Dn

)

≤ P

(∣∣∣∣∣
1

n

n∑

i=1

γiξi − E[γ1ξ1]

∣∣∣∣∣+
n∑

i=1

(τiξi + γiχi) > ǫ

∣∣∣∣∣Dn

)

≤ 1

P (Dn)
P

(∣∣∣∣∣
1

n

n∑

i=1

γiξi − E[γ1ξ1]

∣∣∣∣∣+ n−κ+δ > ǫ

)
(11)

+ P

(
1

n

n∑

i=1

(τiξi + γiχi) > n−κ+δ

∣∣∣∣∣Dn

)
,(12)

for any δ0 < δ < κ. By Lemma 2.1, P (Dn) converges to one, and by the
Weak Law of Large Numbers (WLLN) we have that each of (9), (10) and
(11) converges to zero as n → ∞, as required. To see that (12) converges to
zero use Markov’s inequality to obtain

P

(
1

n

n∑

i=1

(τiξi + γiχi) > n−κ+δ

∣∣∣∣∣Dn

)
≤ E[τ1ξ1 + γ1χ1|Dn]

n−κ+δ

=
E[(τ1ξ1 + γ1χ1)1(Dn)]

P (Dn)n−κ+δ
.(13)
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Now let Fn = σ(γ1, . . . , γn, ξ1, . . . , ξn) to compute

E[(τ1ξ1 + γ1χ1)1(Dn)] = E[(ξ1E[τ1|Fn] + γ1E[χ1|Fn])1(Dn)]

≤ E

[
(ξ1 + γ1)

|∆n|
n

1(Dn)

]
≤ 2µn−κ+δ0 ,

which implies that (13) converges to zero.
Finally, provided that E[γ21 + ξ21 ] < ∞, the WLLN combined with the

arguments used to bound (12) give

P

(∣∣∣∣∣
1

n

n∑

i=1

M2
i − E[γ21 ]

∣∣∣∣∣ > ǫ

)

≤ 1

P (Dn)
P

(∣∣∣∣∣
1

n

n∑

i=1

γ2i − E[γ21 ]

∣∣∣∣∣+
1

n

n∑

i=1

(2γiτi + τ2i ) > ǫ,Dn

)

≤ 1

P (Dn)
P

(∣∣∣∣∣
1

n

n∑

i=1

γ2i − E[γ21 ]

∣∣∣∣∣+ n−κ+δ > ǫ

)

+ P

(
1

n

n∑

i=1

(2γiτi + τ2i ) > n−κ+δ

∣∣∣∣∣Dn

)

≤ o(1) +
E[(2γ1 + 1)τ1|Dn]

n−κ+δ

≤ o(1) +
E[2γ1 + 1]

P (Dn)nδ−δ0
,

and symmetrically,

P

(∣∣∣∣∣
1

n

n∑

i=1

D2
i − E[ξ21 ]

∣∣∣∣∣ > ǫ

)
→ 0,

as n → ∞.

5.2. Configuration Model. This subsection contains the proofs of Propo-
sition 4.1, which establishes the uniformity of simple graphs, Propositions 4.2
and 4.4, which concern the repeated directed configuration model, and Propo-
sition 4.5 which refers to the erased directed configuration model.

Proof of Proposition 4.1. Suppose m and d have equal sum ln, and
number the inbound and outbound half-edges by 1, 2, . . . , ln. The process of
matching half edges in the configuration model is equivalent to a permuta-
tion (p(1), p(2), . . . , p(ln)) of the numbers (1, 2, . . . , ln) where we pair the ith
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inbound half-edge to the p(i)th outbound half-edge, with all ln! permuta-
tions being equally likely. Note that different permutations can actually lead
to the same graph, for example, if we switch the position of two outbound
half-edges of the same node, so not all multigraphs have the same prob-
ability. Nevertheless, a simple graph can only be produced by

∏n
i=1 di!mi!

different permutations; to see this note that for each node vi, i = 1, . . . , n, we
can permute its mi inbound half-edges and its di outbound half-edges with-
out changing the graph. It follows that since the number of permutations
leading to a simple graph is the same for all simple graphs, then conditional
on the resulting graph being simple, it is uniformly chosen among all simple
graphs having bi-degree-sequence (m,d).

Next, we give the proofs of the results related to the repeated directed
configuration model. Before proceeding with the proof of Proposition 4.2 we
give the following preliminary lemma, which will be used to establish that
under Condition 4.1 the maximum in- and out-degrees cannot grow too fast.

Lemma 5.2. Let {ank : 1 ≤ k ≤ n, n ∈ N} be a triangular array of non-
negative integers, and suppose there exist nonnegative numbers {pj : j ∈
N ∪ {0}} such that

∑∞
j=0 pj = 1,

lim
n→∞

1

n

n∑

k=1

1(ank = j) = pj , for all j ∈ N ∪ {0}

and lim
n→∞

1

n

n∑

k=1

ank =
∞∑

j=0

jpj < ∞.

Then,

lim
n→∞

max
1≤k≤n

ank
n

= 0.

Proof. Define

F (x) =

⌊x⌋∑

j=0

pj and Fn(x) =
1

n

n∑

k=1

1(ank ≤ x)

and note that F and Fn are both distribution functions with support on the
nonnegative integers. Define the pseudoinverse operator h−1(u) = inf{x ≥
0 : u ≤ h(x)} and let

Xn = F−1
n (U) and X = F−1(U),
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where U is a Uniform(0,1) random variable. It is easy to verify that Xn and
X have distributions Fn and F , respectively. Furthermore, the assumptions
imply that

Xn → X a.s.

as n → ∞ and

E[Xn] =

∞∑

j=0

j
1

n

n∑

k=1

1(ank = j) =
1

n

n∑

k=1

∞∑

j=0

j1(ank = j) =
1

n

n∑

k=1

ank → E[X]

as n → ∞, where the exchange of sums is justified by Fubini’s theorem. Now
note that by Fatou’s lemma,

lim inf
n→∞

E[Xn1(Xn ≤
√
n)] ≥ E

[
lim inf
n→∞

Xn1(Xn ≤
√
n)
]
= E[X],

which implies that
lim
n→∞

E[Xn1(Xn >
√
n)] = 0.

Finally,

E[Xn1(Xn ≥ n)] =

∞∑

j=⌊√n⌋+1

j
1

n

n∑

k=1

1(ank = j)

=
1

n

n∑

k=1

∞∑

j=⌊√n⌋+1

j1(ank = j) =
1

n

n∑

k=1

ank1(ank >
√
n),

from where it follows that

lim
n→∞

max
1≤k≤n

ank1(ank >
√
n)

n
= 0,

which in turn implies that

lim
n→∞

max
1≤k≤n

ank
n

≤ lim
n→∞

(√
n

n
+ max

1≤k≤n

ank1(ank >
√
n)

n

)
= 0.

Proof of Proposition 4.2. Following the proof of Proposition 7.9 in
[25], we define the random variable T̃n to be the total number of pairs of
multiple edges in the same direction, e.g., if from node vi to node vj there

are k ≥ 2 edges, their contribution to T̃n is
(k
2

)
. Note that Tn ≤ T̃n, with

strict inequality whenever there is at least one pair of nodes having three or
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more multiple edges in the same direction. We claim that T̃n − Tn
P−→ 0 as

n → ∞, which implies that

if (Sn, T̃n) ⇒ (S, T ), then (Sn, Tn) ⇒ (S, T )

as n → ∞. To prove the claim start by defining indicator random variables
for each of the possible self-loops and multiple edges in the same direction
that the multigraph can have. For the self-loops we use the notation u =
(r, t, i) to define

Iu := 1(self-loop from rth outbound stub to tth inbound stub of node vi),

and for the pairs of multiple edges in the same direction we use w =
(r1, t1, r2, t2, i, j) to define

Jw := 1(rsth outbound stub of node vi paired to tsth inbound stub

of node vj , s = 1, 2).

The sets of possible vectors u and w are given by

I = {(r, t, i): 1 ≤ i ≤ n, 1 ≤ r ≤ dni, 1 ≤ t ≤ mni}, and

J = {(r1, t1, r2, t2, i, j): 1 ≤ i 6= j ≤ n, 1 ≤ r1 < r2 ≤ dni, 1 ≤ t1 6= t2 ≤ mnj},

respectively. It follows from this notation that

Sn =
∑

u∈I
Iu and T̃n =

∑

w∈J
Jw.

Next, note that by the union bound,

P
(
T̃n − Tn ≥ 1

)

≤ P (at least two nodes with three or more edges in the same direction)

≤
∑

1≤i 6=j≤n

P (three or more edges from node vi to node vj)

≤
∑

1≤i 6=j≤n

dni(dni − 1)(dni − 2)mnj(mnj − 1)(mnj − 2)

ln(ln − 1)(ln − 2)

≤
(

1√
n

max
1≤i≤n

dni

)(
1√
n

max
1≤j≤n

mnj

)(
n

ln − 2

)3

· 1
n

n∑

i=1

d2ni ·
1

n

n∑

j=1

m2
nj

= o(1)
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as n → ∞, where for the last step we used Condition 4.1 and Lemma 5.2.

It follows that T̃n − Tn
P−→ 0 as claimed.

We now proceed to prove that (Sn, T̃n) ⇒ (S, T ), where S and M are
independent Poisson random variables with means λ1 and λ2, respectively.
To do this we use Theorem 2.6 in [25] which says that if for any p, q ∈ N

lim
n→∞

E
[
(Sn)p(T̃n)q

]
= λp

1λ
q
2,

where (X)r = X(X − 1) · · · (X − r + 1), then (Sn, T̃n) ⇒ (S, T ) as n → ∞.
To compute the expectation we use Theorem 2.7 in [25], which gives

E
[
(Sn)p(T̃n)q

]

=
∑

u1,...,up∈I

∑

w1,...,wq∈J
P
(
Iu1 = · · · = Iup = Jw1 = · · · = Jwq = 1

)
,(14)

where the sums are over all p-permutations, respectively q-permutations, of
the distinct indices in I, respectively J .

Next, by the fact that all stubs are uniformly paired, we have that

P
(
Iu1 = · · · = Iup = Jw1 = · · · = Jwq = 1

)
,=

1
∏p+2q−1

i=0 (ln − i)

unless there is a conflict in the attachment rules, i.e., one stub is required
to pair with two or more different stubs within the indices {u1, . . . ,up} and
{w1, . . . ,wq}, in which case

(15) P
(
Iu1 = · · · = Iup = Jw1 = · · · = Jwq = 1

)
= 0.

Therefore, from (14) we obtain

E[(Sn)p(T̃n)q] ≤
∑

u1,...,up∈I

∑

w1,...,wq∈J

1
∏p+2q−1

i=0 (ln − i)

=
|I|(|I| − 1) · · · (|I| − p+ 1)|J |(|J | − 1) · · · (|J | − q + 1)

ln(ln − 1) · · · (ln − (p+ 2q − 1))
,(16)

where |A| denotes the cardinality of set A. Now note that

|I| =
n∑

i=1

mnidni, and
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|J | =
∑

1≤i 6=j≤n

dni(dni − 1)

2
mnj(mnj − 1)

=
1

2

(
n∑

i=1

mni(mni − 1)

)(
n∑

i=1

dni(dni − 1)

)

− 1

2

n∑

i=1

mni(mni − 1)dni(dni − 1).

By Lemma 5.2 and Condition 4.1 we have

n∑

i=1

mni(mni − 1)dni(dni − 1)

≤
(
max
1≤i≤n

mni

)(
max
1≤i≤n

dni

) n∑

i=1

mnidni = o(n2)

as n → ∞. Hence, it follows from Condition 4.1 that

|I|
n

= E[γξ] + o(1),

|J |
n2

=
1

2
E[γ(γ − 1)]E[ξ(ξ − 1)] + o(1), and

n

ln
=

1

µ
+ o(1)

as n → ∞. Since p and q remain fixed as n → ∞, we have

lim sup
n→∞

E[(Sn)p(T̃n)q] =

(
lim
n→∞

|I|
n

)p(
lim
n→∞

|J |
n2

)q (
lim
n→∞

n

ln

)p+2q

= (E[γξ])p
(
E[γ(γ − 1)]E[ξ(ξ − 1)]

2

)q ( 1

µ

)p+2q

= λp
1λ

q
2.

To prove the matching lower bound, we note that (15) occurs exactly when
there is a conflict in the attachment rules. Each time a conflict happens, the
numerator of (16) decreases by one. Therefore,

E
[
(Sn)p(T̃n)q

]

=
|I|(|I| − 1) · · · (|I| − p+ 1)|J |(|J | − 1) · · · (|J | − q + 1)

ln(ln − 1) · · · (ln − (p+ 2q − 1))
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−
∑

u1,...,up∈I

∑

w1,...,wq∈J

1(u1, . . . ,up,w1, . . . ,wq have a conflict)
∏p+2q−1

i=0 (ln − i)

= λp
1λ

q
2 + o(1)

− 1

(µn)p+2q

∑

u1,...,up∈I

∑

w1,...,wq∈J
1(u1, . . . ,up,w1, . . . ,wq have a conflict)

as n → ∞. To bound the total number of conflicts note that there are three
possibilities:

1. a stub is assigned to two different self-loops, or
2. a stub is assigned to a self-loop and a multiple edge, or
3. a stub is assigned to two different multiple edges.

We now discuss each of the cases separately. For conflicts of type (a) suppose
there is a conflict between the self-loops ua and ub; the remaining p−2 self-
loops and q pairs of multiple edges can be chosen freely. Then the number of
such conflicts is bounded by |I|p−2|J |q = O

(
np+2q−2

)
, hence it suffices to

show that the total number of conflicting pairs (ua,ub) is o(n
2) as n → ∞.

Now, to see that this is indeed the case, first choose the node vi where the
conflicting pair is; if the conflict is that an outbound stub is assigned to two
different inbound stubs then we can choose the problematic outbound stub
in dni ways and the two inbound stubs in mni(mni− 1) ways, whereas if the
conflict is that an inbound stub is assigned to two different outbound stubs
then we can choose the problematic inbound stub in mni ways and the two
outbound stubs in dni(dni − 1) ways. Thus, the total number of conflicting
pairs is bounded by

n∑

i=1

(dnim
2
ni +mnid

2
ni) ≤

(
max
1≤i≤n

mni + max
1≤i≤n

dni

)
2

n∑

i=1

mnidni

= o(n3/2) = o(n2).

For conflicts of type (b) suppose there is a conflict between the self-loop
ua and the pair of multiple edges wb; choose the remaining p− 1 self-loops
and q−1 multiple edges freely. Then, the number of such conflicts is bounded
by |I|p−1|J |q−1 = O

(
np+2q−3

)
, and it suffices to show that the number of

conflicting pairs (ua,wb) is o(n3) as n → ∞. Similarly as in case (a), an
outbound stub of node vi can be paired to a self-loop and a multiple edge
to node vj in dnimnimnj(dni − 1)(mnj − 1) ways, and an inbound stub of
node vi can be paired to a self-loop and a multiple edge from node vj in
mnidnidnj(mni − 1)(dnj − 1) ways, and so the total number of conflicting
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pairs is bounded by

n∑

i=1

n∑

j=1

(d2nimnim
2
nj +m2

nidnid
2
nj)

≤
(
max
1≤i≤n

mni + max
1≤i≤n

dni

)
2

(
n∑

i=1

m2
ni

)(
n∑

i=1

d2ni

)

= o(n5/2) = o(n3).

Finally, for conflicts of type (c) we first fix wa and wb and choose freely
the remaining p self-loops and q − 2 multiple edges, which can be done in
less than |I|p|J |q−2 = O

(
np+2q−4

)
ways. It then suffices to show that the

number of conflicting pairs (wa,wb) is o(n
4) as n → ∞. A similar reasoning

to that used in the previous cases gives that the total number of conflicting
pairs is bounded by

2

n∑

i=1

n∑

j=1

n∑

k=1

(d3nim
2
njm

2
nk +m3

nid
2
njd

2
nk)

≤ 2

(
max
1≤i≤n

mni + max
1≤i≤n

dni

)


n∑

i=1

d2ni

(
n∑

i=1

m2
ni

)2

+
n∑

i=1

m2
ni

(
n∑

i=1

d2ni

)2



= o(n7/2) = o(n4).

We conclude that in any of the three cases the number of conflicts is
negligible, which completes the proof.

Proof of Proposition 4.4. Let Sn be the event that the resulting
graph is simple, and note that the bi-degree-sequence (M(r),D(r)) is the
same as (M,D) given Sn.

To prove part (a) note that for any i, j = 0, 1, 2, . . . ,

h(n)(i, j) =
1

n

n∑

i=1

P (Mk = i,Dk = j|Sn) =
1

P (Sn)
P (M1 = i,D1 = j,Sn),

since the {(Mk,Dk)}nk=1 are identically distributed. Now condition on Gn =
σ(M1, . . . ,Mn,D1, . . . ,Dn) to obtain

P (M1 = i,D1 = j,Sn) = E[1(M1 = i,D1 = j)P (Sn|Gn)],

from where it follows that
∣∣∣h(n)(i, j) − figj

∣∣∣ ≤
∣∣∣∣
E[1(M1 = i,D1 = j)(P (Sn|Gn)− P (Sn))]

P (Sn)

∣∣∣∣
+ |P (M1 = i,D1 = j)− figj |
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≤ E

[∣∣∣∣
P (Sn|Gn)

P (Sn)
− 1

∣∣∣∣
]
+ |P (M1 = i,D1 = j) − figj | .

Theorem 2.4 gives that the second term converges to zero, and for the first
term use Theorem 4.3 to obtain that both P (Sn) and P (Sn|Gn) converge to
the same positive limit, so by dominated convergence,

lim
n→∞

E

[∣∣∣∣
P (Sn|Gn)

P (Sn)
− 1

∣∣∣∣
]
≤ E

[
lim
n→∞

∣∣∣∣
P (Sn|Gn)

P (Sn)
− 1

∣∣∣∣
]
= 0.

For part (b) we only show the proof for ĝk
(n) since the proof for f̂k

(n)

is symmetrical. Note that ĝk
(n) is a quantity defined on Sn; recall that

Dn =
{
|∆n| ≤ n1−κ+δ0

}
and that Di has the same distribution as ξi + χi

conditional on the event Dn. Fix ǫ > 0 and use the union bound to obtain

P
(∣∣∣ĝk(n) − gk

∣∣∣ > ǫ
∣∣∣Sn

)

≤ 1

P (Sn)
P

(∣∣∣∣∣
1

n

n∑

i=1

1(Di = k)− gk

∣∣∣∣∣ > ǫ

)

≤ 1

P (Sn)
P

(
1

n

n∑

i=1

|1(ξi + χi = k)− 1(ξi = k)| > ǫ/2

∣∣∣∣∣Dn

)
(17)

+
1

P (Sn)P (Dn)
P

(∣∣∣∣∣
1

n

n∑

i=1

1(ξi = k)− gk

∣∣∣∣∣ > ǫ/2

)
.(18)

By Theorem 4.3 and Lemma 2.1, P (Sn) and P (Dn) are bounded away from
zero, so we only need to show that the numerators converge to zero. The
arguments are the same as those used in the proof of Proposition 2.5; for
(18) use Chebyshev’s inequality to obtain that

P

(∣∣∣∣∣
1

n

n∑

i=1

1(ξi = k)− gk

∣∣∣∣∣ > ǫ/2

)
≤ Var(1(ξ1 = k))

n(ǫ/2)2
= O(n−1),

as n → ∞, and for (17)

P

(
1

n

n∑

i=1

|1(ξi + χi = k)− 1(ξi = k)| > ǫ/2

∣∣∣∣∣Dn

)

≤ P

(
1

n

n∑

i=1

1(χi = 1) > ǫ/2

∣∣∣∣∣Dn

)

≤ P

( |∆n|
n

> ǫ/2

∣∣∣∣Dn

)
≤ 1(n−κ+δ0 > ǫ/2),

which also converges to zero. This completes the proof.
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Finally, the last result of the paper, which refers to the erased directed
configuration model, is given below. Since the technical part of the proof
is to show that the probability that no in-degrees or out-degrees of a fixed
node are removed during the erasing procedure, we split the proof of Propo-
sition 4.5 into two parts. The following lemma contains the more delicate
step.

Lemma 5.3. Consider the graph obtained through the erased directed
configuration model using as bi-degree-sequence (M,D), as constructed in
Subsection 2.1. Let E+ and E− be the number of inbound stubs and outbound
stubs, respectively, that have been removed from node v1 during the erasing
procedure. Then,

lim
n→∞

P (E+ = 0) = 1 and lim
n→∞

P (E− = 0) = 1.

Proof. We only show the result for E+ since the proof for E− is sym-
metrical. Define the set

P+
n = {(i1, . . . , it) : 2 ≤ i1 6= i2 · · · 6= it ≤ n, 1 ≤ t ≤ n},

and note that in order for all the inbound stubs of node v1 to survive the
erasing procedure, it must have been that they were paired to outbound
stubs of M1 different nodes from {v2, . . . , vn}. Before we proceed it is helpful
to recall some definitions from Section 2, Ln =

∑n
i=1 Mi =

∑n
i=1 Di, Γn =∑n

i=1 γi, Ξn =
∑n

i=1 ξi, ∆n = Γn − Ξn, and Dn = {|∆n| ≤ ns}, where
s = 1−κ+δ0; also, {γi} and {ξi} are independent sequences of i.i.d. random
variables having distributions F and G, respectively. Now fix 0 < ǫ < 1− s
and let Gn = σ(M1, . . . ,Mn,D1, . . . ,Dn). Then, since Di = ξi + χi ≥ ξi,

P
(
E+ = 0

)

= E
[
P
(
E+ = 0

∣∣Gn

)]
≥ E

[
P
(
E+ = 0

∣∣Gn

)
1(1 ≤ M1 ≤ nǫ)

]
+ P (M1 = 0)

= E



1(1 ≤ M1 ≤ nǫ)

Ln!

∑

(i1,i2,...,iM1
)∈P+

n

Di1Di2 · · ·DiM1
(Ln −M1)!




+ P (M1 = 0)

≥ E



1(1 ≤ γ1 + τ1 ≤ nǫ)

Ln!

∑

(i1,i2,...,i(γ1+τ1)
)∈P+

n

ξi1ξi2 · · · ξi(γ1+τ1)
(Ln − γ1 − τ1)!

∣∣∣∣∣∣∣
Dn




+ P (M1 = 0)
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≥ E



1(1 ≤ γ1 ≤ nǫ)1(τ1 = 0)

(Ln)γ1

∑

(i1,i2,...,iγ1 )∈P
+
n

ξi1ξi2 · · · ξiγ1

∣∣∣∣∣∣∣
Dn




(19)

+ P (M1 = 0).

Next, condition on Fn = σ(γ1, . . . , γn, ξ1, . . . , ξn) and note that

P (τ1 = 0|Fn) = 1 (∆n ≥ 0) +
Γn

Γn + |∆n|
1(∆n < 0) ≥ Γn

Γn + |∆n|
.

It follows that the expectation in (19) is equal to

E


P (τ1 = 0|Fn)

1(1 ≤ γ1 ≤ nǫ)

(Ln)γ1

∑

(i1,i2,...,iγ1 )∈P
+
n

ξi1ξi2 · · · ξiγ1

∣∣∣∣∣∣∣
Dn




≥ E




Γn

Γn + |∆n|
· 1(1 ≤ γ1 ≤ nǫ)

(Γn + |∆n|)γ1
∑

(i1,i2,...,iγ1)∈P
+
n

ξi1ξi2 · · · ξiγ1

∣∣∣∣∣∣∣
Dn




≥ E



1(1 ≤ γ1 ≤ nǫ)Γn

(Γn + ns)γ1+1

∑

(i1,i2,...,iγ1)∈P
+
n

ξi1ξi2 · · · ξiγ1

∣∣∣∣∣∣∣
Dn




≥ E


1(1 ≤ γ1 ≤ nǫ)

∑

(i1,i2,...,iγ1 )∈P
+
n

E

[
1(Dn)Γn

(Γn + ns)γ1+1
· ξi1ξi2 · · · ξiγ1

∣∣∣∣ γ1
]



= E

[
1(1 ≤ γ1 ≤ nǫ)(n − 1)!

(n− 1− γ1)!nγ1
E

[
1(Dn)Γnn

γ1

(Γn + ns)γ1+1
· ξ1ξ2 · · · ξγ1

∣∣∣∣ γ1
]]

.

It follows by Fatou’s lemma, Lemma 2.1 and Theorem 2.4 that

lim inf
n→∞

P (E+ = 0)

≥ E

[
1(γ1 ≥ 1) lim inf

n→∞
E

[
1(Dn)Γnn

γ1

(Γn + ns)γ1+1
· ξ1ξ2 · · · ξγ1

∣∣∣∣ γ1
]]

+ P (γ1 = 0).

Next, define the function u+n : N → [0,∞) as

u+n (t) = E

[
1(|Γn−1 + t− Ξn| ≤ ns)(Γn−1 + t)nt

(Γn−1 + t+ ns)t+1
· ξ1ξ2 · · · ξt

]
,
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and note that it only remains to show that lim infn→∞ u+n (t) = 1 for all
t ∈ N.

Now let 0 < a < µ and note that

u+n (t) ≥ E

[
1(|Γn−1 + t− Ξn| ≤ ns)

µt
· ξ1ξ2 · · · ξt

]
− P (Γn−1 < an)

− E

[
1(Γn−1 ≥ an)

∣∣∣∣
(Γn−1 + t)nt

(Γn−1 + t+ ns)t+1
− 1

µt

∣∣∣∣ ξ1ξ2 · · · ξt
]
.

The SLLN and bounded convergence give limn→∞ P (Γn−1 < an) = 0 and

lim sup
n→∞

E

[
1(Γn−1 ≥ an)

∣∣∣∣
(Γn−1 + t)nt

(Γn−1 + t+ ns)t+1
− 1

µt

∣∣∣∣ ξ1ξ2 · · · ξt
]

≤ E

[
ξ1ξ2 · · · ξt lim sup

n→∞

∣∣∣∣
(Γn−1 + t)nt

(Γn−1 + t+ ns)t+1
− 1

µt

∣∣∣∣
]
= 0,

from where it follows that

lim inf
n→∞

u+n (t) ≥ lim inf
n→∞

E

[
1(|Γn−1 + t− Ξn| ≤ ns)

µt
· ξ1ξ2 · · · ξt

]
.

The last step is to condition on ξ1, ξ2 . . . , ξt and use Fatou’s Lemma again
to obtain

lim inf
n→∞

E

[
1(|Γn−1 + t− Ξn| ≤ ns)

µt
· ξ1ξ2 · · · ξt

]

= lim inf
n→∞

E

[
ξ1ξ2 · · · ξt

µt
P (|Γn−1 + t− Ξn| ≤ ns|ξ1, . . . , ξt)

]

≥ E

[
ξ1ξ2 · · · ξt

µt
lim inf
n→∞

P (|Γn−1 + t− Ξn| ≤ ns|ξ1, . . . , ξt)
]
.

Finally, by the same reasoning used in the proof of Lemma 2.1, we obtain

lim
n→∞

P (|Γn−1 + t− Ξn| ≤ ns|ξ1, . . . , ξt) = 1 a.s.

Since E[ξ1ξ2 · · · ξt]/µt = 1, this completes the proof.

Proof of Proposition 4.5. To prove part (a) note that since the

{(M (e)
i ,D

(e)
i )}ni=1 are identically distributed, then h(n)(i, j) = P (M

(e)
1 =

i,D
(e)
1 = j). It follows that
∣∣∣h(n)(i, j) − figj

∣∣∣ ≤
∣∣∣P (M

(e)
1 = i,D

(e)
1 = j)− P (M1 = i,D1 = j)

∣∣∣
+ |P (M1 = i,D1 = j)− figj | .
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By Theorem 2.4 we have that |P (M1 = i,D1 = j)− figj | → 0, as n → ∞,
and for the remaining term note that

∣∣∣P (M
(e)
1 = i,D

(e)
1 = j)− P (M1 = i,D1 = j)

∣∣∣

≤ E
[∣∣∣1(M (e)

1 = i,D
(e)
1 = j)− 1(M1 = i,D1 = j)

∣∣∣
]

≤ E
[∣∣∣1(D(e)

1 = j)− 1(D1 = j)
∣∣∣
]
+ E

[∣∣∣1(M (e)
1 = i)− 1(M1 = i)

∣∣∣
]
.(20)

To bound the expectations in (20) let E+ and E− be the number of inbound
stubs and outbound stubs, respectively, that have been removed from node
v1 during the erasing procedure. Then,

E
[∣∣∣1(D(e)

1 = j)− 1(D1 = j)
∣∣∣
]
≤ P

(
E− ≥ 1

)
and

E
[∣∣∣1(M (e)

1 = i)− 1(M1 = i)
∣∣∣
]
≤ P

(
E+ ≥ 1

)
.

By Lemma 5.3,

lim
n→∞

P (E− ≥ 1) = 0 and lim
n→∞

P (E+ ≥ 1) = 0,

which completes the proof of part (a).

For part (b) we only show the proof for ĝk
(n), since the proof for f̂k

(n)
is

symmetrical. Fix ǫ > 0 and use the triangle inequality and the union bound
to obtain

P (|ĝk(k)− gk| > ǫ) ≤ P

(∣∣∣∣∣ĝk(k)−
1

n

n∑

i=1

1(Di = k)

∣∣∣∣∣ > ǫ/2

)

+ P

(∣∣∣∣∣
1

n

n∑

i=1

1(Di = k)− gk

∣∣∣∣∣ > ǫ/2

)
.

From the proof of Proposition 4.4, we know that the second probability
converges to zero as n → ∞, and for the first one use Markov’s inequality
to obtain

P

(∣∣∣∣∣ĝk(k)−
1

n

n∑

i=1

1(Di = k)

∣∣∣∣∣ > ǫ/2

)

≤ P

(
1

n

n∑

i=1

∣∣∣1(D(e)
i = k)− 1(Di = k)

∣∣∣ > ǫ/2

)
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≤ 2

ǫ
E
[∣∣∣1(D(e)

1 = k)− 1(D1 = k)
∣∣∣
]

≤ 2

ǫ
P (E− ≥ 1) → 0,

as n → ∞, by Lemma 5.3.
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