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We consider a discrete-time Markov chain Φ on a general state-space X, whose transition probabilities

are parameterized by a real-valued vector θ. Under the assumption that Φ is geometrically ergodic with

corresponding stationary distribution π(θ), we are interested in using Monte Carlo simulation for estimating

the gradient ∇α(θ) of the steady-state expectation

α(θ) = π(θ)f.

To this end, we first give sufficient conditions for the differentiability of α(θ) and for the calculation of

its gradient via a sequence of finite horizon expectations. We then propose two different likelihood ratio

estimators and analyze their limiting behavior.

Key words : Simulation; gradient estimation; likelihood ratio

History :

1. Introduction

Consider a discrete-time Markov chain Φ = {Φk : k≥ 0} on a general state space X whose transition

kernel P (θ) = {P (θ,x,A) : x ∈ X, A⊆ X} is parameterized by θ ∈Θ⊆R. We assume that Φ has a

unique invariant distribution π(θ) = {π(θ,A) : A⊆ X} and that we are interested in using Monte

Carlo simulation to estimate the derivative of

α(θ) = π(θ)f =

∫
X

f(x)π(θ, dx),

1
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at a specific point θ0 ∈ θ, for some function f such that π(θ)|f | <∞. Alternatively, we may be

interested in estimating the derivative of the expected cumulative reward

Eθ0

[
n−1∑
j=0

f(Φj)

]

over the time horizon [0, n), especially in situations when n is large.

We focus throughout the paper in the case when Φ is geometrically ergodic, where the conditions

for the existence of the derivative α′(θ) are stated more concisely and are easier to verify (more

general conditions for the existence of the gradient can be found in Rhee and Glynn (2016)).

However, rather than trying to exploit the regenerative structure that our assumptions provide, we

focus on non-regenerative methods that require only simulating the chain’s transitions under P (θ0).

This approach can be particularly useful in situations where estimators based on regenerative cycles

are difficult to implement or the length of the cycles is too long to make them efficient.

We now give an informal description of the type of estimators that we study; the necessary

assumptions will be made precise in the following section. From the strong law of large numbers

we can expect that when Φ evolves according to P (θ), then

αn =
1

n

n−1∑
j=0

f(Φj)→ α(θ) P (θ)− a.s.

as n→∞ for any initial distribution. Moreover, if we assume that there exists a family of densities

{p(θ,x, y) : x, y ∈X} such that the transition probabilities satisfy

P (θ,x, dy) = p(θ,x, y)P (θ0, x, dy),

then we can construct the likelihood ratio

Ln(θ) =
n∏
j=1

p(θ,Φj−1,Φj), n≥ 1,

and use it to compute the expectation of αn via the identity

Eθ[αn] =Eθ0 [αnLn(θ)] ; (1)

here Eθ[ · ] denotes the expectation with respect to the transition probabilities P (θ) when the chain

is started according to some fixed distribution µ. Details regarding this identity can be found for

example in Glynn and L’Ecuyer (1995), Theorem 1. Next, provided we have uniform integrability,

we would have that

Eθ[αn]→ α(θ)
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as n→∞, and if we can further justify the exchange of derivative and expectation, then

d

dθ
Eθ[αn] =Eθ0 [αnL

′
n(θ)]→ α′(θ) n→∞. (2)

If we are interested instead in estimating the derivative of the finite horizon expected cumulative

reward, the corresponding estimator would be nαnL
′
n(θ). For details on the estimation of gradients

via likelihood ratios and other methods, as well as a variety of applications in finance, operations

research and engineering, we refer the reader to L’Ecuyer (1990), Glasserman (1991), Fu (2006).

The observations made above suggest that one could think of using αnL
′
n(θ) with n sufficiently

large as an estimator for α′(θ). Unfortunately, αnL
′
n(θ) turns out to be a poorly behaved estimator

since it is of order Op(
√
n); in fact, under some additional assumptions, n−1/2αnL

′
n(θ) converges

in distribution as n→∞ to a normal random variable (see Proposition 1). Here and throughout

the paper we write Xn = Op(an) to mean that Xn/an is stochastically bounded. Note that the

order of magnitude is not only important for computing α′(θ) but also for computing finite horizon

cumulative rewards whenever n is large, making the need for better estimators important to both

cases. The first of our two proposed estimators, described in detail in Section 3, uses L′n(θ0) as

a control variate to reduce the variance of αnL
′
n(θ0). The resulting estimator, after choosing the

optimal control variate coefficient, is given by

(αn−α(θ0))L
′
n(θ0), (3)

and is shown to be of order Op(1) in Proposition 2; a consistent estimator can then be obtained by

computing the average of i.i.d. copies of (3). An estimator of this type has been shown in Hashemi

et al. (2016) to be very successful in practice, where it was used to compute the sensitivities in

reaction networks.

Our second estimator, described in detail in Section 4, exploits the martingale structure of

L′n(θ0) to obtain an alternative representation for Eθ0 [αnL
′
n(θ0)] as the expectation of the discrete

stochastic integral

1

n

n−1∑
k=1

n−1∑
l=k

f(Φl)Dk, (4)

where the {Dk} are the martingale differences in R satisfying L′n(θ0) =
∑n

k=1Dk. As is the case with

αnL
′
n(θ), this estimator turns out to be of order Op(

√
n) (see Proposition 3), but can dramatically

be improved by centering it with respect to α(θ0). The optimized estimator takes the form

1

n

n−1∑
k=1

n−1∑
l=k

(f(Φl)−α(θ0))Dk (5)

and will be shown to be of order Op(1) as n→∞. Moreover, the analysis of the asymptotic variance

of (3) and (5), included in Section 5, suggests that (5) is a better estimator than (3).
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It is worth mentioning that the two improved estimators (3) and (5) require the knowledge of

α(θ0), which in practice may need to be approximated. However, we do not explore in this paper

the impact that such an approximation could have on the behavior of the proposed estimators,

and assume throughout that α(θ0) is known.

The first part of the paper establishes sufficient conditions on the Markov chain Φ and the

function f under which α′(θ0) exists and the following limit holds

Eθ0 [αnL
′
n(θ0)]→ α′(θ0) n→∞. (6)

Conditions under which the exchange of derivative and expectation in (2) is valid can be found in

L’Ecuyer (1995), so we will not focus on this point. Once the convergence in (6) is established in

Section 2, we move on to the analysis of αnL
′
n(θ0) and the control variates estimator given in (3);

the corresponding limit theorems are stated in Section 3. The limit theorems for the the integral-

type estimators given in (4) and (5) are included in Section 4. To conclude the expository part

of the paper, we compute in Section 5 the asymptotic variance of our two proposed estimators.

Finally, Section 6 contains the majority of the proofs.

2. The model

We consider throughout the paper a discrete-time Markov chain Φ = {Φk : k≥ 0} on a general state

space X equipped with a countably generated σ-field B(X), and governed by the transition kernel

P (θ) = {P (θ, x,A) : x ∈ X,A ⊆ X} parameterized by θ ∈Θ. Since the analysis of our estimators

easily extends to the vector case, we assume from this point onwards that Θ⊆ Rd is a family of

continuous parameters for P (θ), and adopt the boldface notation to denote vectors. Under the

conditions given in this section, the Markov chain will possess a unique stationary distribution

π(θ) = {π(θ,A) :A⊆X}, and we are interested in obtaining a Monte Carlo estimator for either:

i) the gradient of the steady-state mean

α(θ) = π(θ)f,

at some fixed point θ0 ∈Θ, for some function f :X→R such that π(θ)|f |<∞, or,

ii) the gradient of the expected cumulative reward

Eθ0

[
n−1∑
j=0

f(Φj)

]
for large time horizons [0, n).

In terms of notation, we use νf to denote the expectation of f with respect to measure ν, that

is,

νf =

∫
X

f(x)ν(dx).
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Similarly, for any Markov transition kernel P we use

Pf(x) =

∫
X

f(y)P (x,dy).

Whenever the context is clear we denote the gradient of a function g at the point θ0 by ∇g(θ0),

and when confusion may arise we will use the more precise notation ∇g(θ)|θ=θ0
. The convention

is to think of vectors as column vectors and to use x′ to denote the transpose of x.

Before giving the main set of assumptions for the Markov chain Φ we include for completeness

some basic norm definitions.

Definition 1. For h : X→ [1,∞) let L∞h denote the space of all measurable functions g on X

such that |g(x)|/h(x) is bounded in x, equipped with the norm

|g|h = sup
x∈X

|g(x)|
h(x)

.

Definition 2. For h :X→ [1,∞) define the h-total variation norm of any signed measure ν as

||ν||h = sup
g:|g|≤h

|νg| .

Definition 3. For a positive function V : X→ [1,∞) we define the V -operator norm distance

between two Markov transition kernels P1 and P2 as

|||P1−P2|||V = sup
h∈L∞

V
,|h|V =1

|(P1−P2)h|V .

Note: It can be shown that the h-operator norm distance can be written in terms of the h-total

variation norm as

|||P1−P2|||V = sup
x∈X

||P1(x, ·)−P2(x, ·)||V
V (x)

.

We can now state a set of sufficient conditions that will guarantee that ∇α(θ0) exists and that

(6) holds.

Assumption 1. Let Φ = {Φn : n ≥ 0} be a Markov chain taking values on X and having one-

step transition probabilities P (θ) = {P (θ, x, dy) : x, y ∈X}, where θ ∈Θ⊆Rd. Fix ε > 0 and define

Bε(θ0) = {θ ∈Θ : max1≤i≤d |θi− θ0,i|< ε}.
i) Suppose that Φ is ψ-irreducible for all θ ∈Bε(θ0).

ii) Suppose that for all θ ∈Bε(θ0) there exist densities p(θ, x, y), differentiable at θ0 and such

that

P (θ, x, dy) = p(θ, x, y)P (θ0, x, dy).

iii) Suppose there exists a set K ⊆B(X), δ > 0, m∈N and a probability measure ν such that

Pm(θ, x, dy)≥ δν(dy) for all x∈K,

for all θ ∈Bε(θ0).
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iv) For the set K above suppose there exists a function V : X→ [1,∞) and constants 0<λ< 1,

b <∞, such that

P (θ)V (x)≤ λV (x) + b1K(x) (7)

for all θ ∈Bε(θ0).

v) Let P (i)(θ0, x, dy) = ∂
∂θi
p(θ, x, y)

∣∣∣
θ=θ0

P (θ0, x, dy) and ei be the vector that has a 1 in the ith

component and zeros elsewhere. Assume that for each 1≤ i≤ d we have
∣∣∣∣∣∣P (i)(θ0)

∣∣∣∣∣∣
V
<∞ and

lim
h→0

∣∣∣∣∣∣∣∣∣∣∣∣P (θ0 +hei)−P (θ0)

h
−P (i)(θ0)

∣∣∣∣∣∣∣∣∣∣∣∣
V

= 0.

vi) Suppose that |gii|V <∞ for each 1≤ i≤ d, where

gii(x) =

∫
X

(
∂

∂θi
p(θ0, x, y)

)2

P (θ0, x, dy).

vii) Suppose |f |√V <∞.

Remark 1. i) By iterating (7) we obtain

Eθ,x[V (Φk)] = P k(θ)V (x)≤ λkV (x) + b
k−1∑
i=0

λi <∞

for all x∈X and all k ∈N.

ii) A set K satisfying Assumption 1(iii) is said to be a small set.

The conditions in Assumption 1, which essentially impose geometric ergodicity (see e.g., Meyn

and Tweedie (1993)) of the chain Φ, are not necessary for the main convergence result of this

section (Theorem 1), but have the advantage of allowing us to keep the arguments concise and

focus on the estimators in the following sections. A similar set of conditions has been used in

Heidergott et al. (2006) (see Section 4.1). More general conditions ensuring the existence of the

gradient outside of the geometric ergodicity setting can be found in Heidergott and Hordijk (2009),

and more recently, in Rhee and Glynn (2016).

We will now proceed to give some properties of Φ, for which we will need the following definition.

Proofs not included immediately after the corresponding statement can be found in Section 6.

Definition 4. We say that the Markov chain Φ is h-ergodic if h :X→ [1,∞) and

i) {Φk : k≥ 0} is positive Harris recurrent with invariant probability π.

ii) the expectation πh is finite

iii) for every initial condition x∈X,

lim
k→∞
||P k(x, ·)−π||h = 0.
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Lemma 1. Under Assumption 1, the Markov chain Φ = {Φk : k ≥ 0} is V -ergodic for each θ ∈

Bε(θ0). Furthermore, for all 1≤ i≤ d,

lim
h→0
||π(θ0 +hei)−π(θ0)||V = 0.

Proof. Fix θ ∈Bε(θ0). By Assumption 1(iv)

P (θ)V̂ (x)≤ V̂ (x)−V (x) + b̂1K(x),

where V̂ = (1−λ)−1V , b̂= (1−λ)−1b and K is a small set. Then, by Theorem 14.2.6 in Meyn and

Tweedie (1993) Φ is V -regular, which in turn implies, by Theorem 14.3.3 in the same reference,

that Φ is V -ergodic. To establish the convergence in V -norm of the invariant probabilities first

note that Assumption 1(v) yields

lim
h→0
|||P (θ0 +hei)−P (θ0)|||V = 0,

from where it follows that ||π(θ0 +hei)−π(θ0)||V → 0 as h→ 0 (see Section 4.2 in Glynn and

Meyn (1996)). �

The main idea behind the analysis of the gradient of the likelihood ratio Ln(θ) is that under

appropriate conditions each of its components is a square integrable martingale with respect to the

family of filtrations generated by Φ. The next lemma makes this statement precise; its proof can

be found in Section 6.

Lemma 2. Suppose that Assumption 1 is satisfied. Define

Dk
j =

∂

∂θk
log p(θ,Φj−1,Φj)

∣∣∣∣
θ=θ0

=
∂

∂θk
p(θ0,Φj−1,Φj), j = 1,2, . . . ,

and Dj = (D1
j , . . . ,D

d
j )
′; let Fj denote the σ-field generated by Φ0,Φ1, . . . ,Φj. Then, under P (θ0),

∇Ln(θ0) =
n∑
j=1

Dj

is a square-integrable martingale in Rd, that is, Mk
n =

∑n

j=1 Dk
j (Mk

0 ≡ 0) is a square integrable-

martingale adapted to Fk for each k= 1, . . . , d.

The analysis of αn∇Ln(θ0) and of its expectation is based on a second martingale, one con-

structed via a solution f̂ to Poisson’s equation:

f̂ −P (θ0)f̂ = f −π(θ0)f. (8)
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Note that if this solution exists then the centered estimator αn−α(θ0) can be written as follows:

n(αn−α(θ0)) =
n∑
k=1

(f(Φk−1)−π(θ0)f)

=
n∑
k=1

(
f̂(Φk−1)−P (θ0)f̂(Φk−1)

)
= f̂(Φ0)− f̂(Φn) +

n∑
k=1

(
f̂(Φk)−P (θ0)f̂(Φk−1)

)
, (9)

where the terms f̂(Φk) − P (θ0)f̂(Φk−1) can be shown to be martingale differences. It follows

that provided Eθ0
[|f̂(Φ0)− f̂(Φn)|]/n→ 0 as n→∞, we have that Eθ0

[αn∇Ln(θ0)] = Eθ0
[(αn −

α(θ0))∇Ln(θ0)] is the expectation of a product of two martingales. The lemma below gives precise

properties of this second martingale.

Lemma 3. Suppose that Assumption 1 is satisfied, then the expectations π(θ0)V and π(θ0)f
2

are both finite, and there exists a solution f̂ to Poisson’s equation (8) satisfying |f̂ | ≤ c1
√
V for

some constant c1 <∞. Moreover, under P (θ0), Zn =
∑n

k=1

(
f̂(Φk)−P (θ0)f̂(Φk−1)

)
is a square-

integrable martingale adapted to Fk = σ(Φ0,Φ1, . . . ,Φk).

We are now ready to state our result for the convergence in (6).

Theorem 1. Under Assumption 1, α(θ) is differentiable at θ0 and

Eθ0
[αn∇Ln(θ0)]→∇α(θ0) n→∞.

3. A first likelihood-ratio estimator

In view of Theorem 1, the remainder of the paper is devoted to the analysis of potential estimators

for Eθ0
[αn∇Ln(θ0)]. An obvious first choice would be to consider

αn∇Ln(θ0) (10)

itself. Unfortunately, as mentioned in the introduction, αn∇Ln(θ0) is poorly behaved for large

values of n; in fact, under additional assumptions, n−1/2αn∇Ln(θ0) converges in distribution to

a multivariate normal random vector, which implies that αn∇Ln(θ0) is of order Op(
√
n). This

observation is a simple consequence of the following weak convergence result, which will also be

helpful in the analysis of the estimators considered in Section 4.

Throughout the rest of the paper let D([0,1],Rd) denote the space of right-continuous Rd-valued

functions on [0,1]d with left limits equipped with the standard Skorohod topology; we use ⇒ to

denote weak convergence. From now on, the Markov chain Φ is always assumed to evolve according

to P (θ0).
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Theorem 2. Suppose that Assumption 1 is satisfied and let f̂ be the solution to Poisson’s equa-

tion (8) from Lemma 3. Define the functions gij according to

gij(x) =

∫
X

∂

∂θi
p(θ0, x, y)

∂

∂θj
p(θ0, x, y)P (θ0, x, dy), 1≤ i, j ≤ d,

gi0(x) = g0i(x) =

∫
X

f̂(y)
∂

∂θi
p(θ0, x, y)P (θ0, x, dy), 1≤ i≤ d,

g00(x) =

∫
X

(
f̂(y)−P (θ0)f̂(x)

)2

P (θ0, x, dy) = P (θ0)f̂
2(x)−

(
P (θ0)f̂(x)

)2

.

Let G(x)∈R(d+1)×(d+1) be the matrix whose (i, j)th element is gij(x) for 0≤ i, j ≤ d. Then,

(
n−1/2bn·c(αbn·c−α(θ0)), n

−1/2∇Lbn·c(θ0)
′)⇒B′ n→∞,

in D([0,1],Rd+1), where B(t) = (B0(t),B1(t), . . . ,Bd(t))
′ is a (d+ 1)-dimensional mean zero Brow-

nian motion with covariance matrix π(θ0)G= (π(θ0)gij).

In view of this theorem we have the following result for n−1/2αn∇Ln(θ0).

Proposition 1. Suppose that Assumption 1 is satisfied and define for 1≤ i, j ≤ d the functions

gij according to Theorem 2. Then,

n−1/2αn∇Ln(θ0)⇒ α(θ0)B̂(1) n→∞,

where B̂ is a d-dimensional mean zero Brownian motion with covariance matrix Σ = (σij), where

σij = π(θ0)gij for 1≤ i, j ≤ d.

Proof. By Lemma 1 Φ is V -ergodic, and since |f |√V <∞ we have π(θ0)|f | <∞. Then, by

Theorem 17.0.1 in Meyn and Tweedie (1993),

lim
n→∞

αn = lim
n→∞

1

n

n−1∑
j=0

f(Φj) = π(θ0)f = α(θ0) a.s. P (θ0).

By Theorem 2 we have

n−1/2∇Ln(θ0)⇒ B̂(1),

where B̂(t) = (B1(t), . . . ,Bd(t))
′ is a d-dimensional mean zero Brownian motion with covariance

matrix Σ. It follows by Slutsky’s lemma that

n−1/2αn∇Ln(θ0)⇒ α(θ0)B̂(1) n→∞.

�
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Proposition 1 shows that αn∇Ln(θ0) is of order Op(
√
n), making it an inefficient estimator for

large values of n. In order to reduce its variance we propose using as a control variate ∇Ln(θ0),

that is, we seek an estimator of the form

Y(C), αn∇Ln(θ0) +C∇Ln(θ0),

where C is a d× d constant matrix. Let ΣY(C) be the covariance matrix of Y(C),

ΣY(C) =Eθ0
[(Y(C)−Eθ0

[Y(C)])(Y(C)−Eθ0
[Y(C)])′].

Our goal is to minimize the so-called generalized variance of Y(C), defined as the determinant of

ΣY(C). The optimal choice for C is given by

C∗n =Eθ0
[(αn∇Ln(θ0)−Eθ0

[αn∇Ln(θ0)])(∇Ln(θ0))
′] (Eθ0

[(∇Ln(θ0))(∇Ln(θ0))
′])
−1

(see Rubinstein and Marcus (1985)). In the notation of Lemma 2,

C∗n =Eθ0
[(αnMn−Eθ0

[αnMn])M′
n] (Eθ0

[MnM
′
n])
−1

=Eθ0
[αnMnM

′
n] (Eθ0

[MnM
′
n])
−1
,

where we have used the observation that Eθ0
[M′

n] = 0 since {Mn : n≥ 0} is a mean-zero martingale.

It can be shown (following the same arguments used in the proof of Theorem 2) that

1

n
Eθ0

[αnMnM
′
n]→ α(θ0)Σ, and

1

n
Eθ0

[MnM
′
n]→Σ,

as n→∞. Therefore, C∗n→ α(θ0)ΣΣ−1 = α(θ0)I, where I is the identity matrix of Rd×d. We then

have that α(θ0)I is the asymptotically optimal choice for the control variate coefficient and our

new suggested estimator is

Y(C∗n) = (αn−α(θ0))∇Ln(θ0).

Using again Theorem 2 we obtain the following convergence result.

Proposition 2. Suppose that Assumption 1 is satisfied and let f̂ be the solution to Poisson’s

equation (8) from Lemma 3. Define the functions gij for 0≤ i, j ≤ d according to Theorem 2. Then,

Y(C∗n)⇒B0(1)B̂(1) n→∞,

where B(t) = (B0(t),B1(t), . . . ,Bd(t))
′ is a (d+ 1)-dimensional mean zero Brownian motion with

covariance matrix Σ = (σij), where σij = π(θ0)gij for 0≤ i, j ≤ d, and B̂(t) = (B1(t), . . . ,Bd(t))
′.
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Proof. By Theorem 2 we have(
n1/2(αn−α(θ0)), n

−1/2∇Ln(θ0)
′)⇒B(1)′ n→∞,

where B(t) = (B0(t),B1(t), . . . ,Bd(t))
′ is a (d+ 1)-dimensional mean zero Brownian motion with

covariance matrix Σ = π(θ0)G. Then, by the continuous mapping principle,

(αn−α(θ0))∇Ln(θ0)⇒B0(1)B̂(1) n→∞.

�

We conclude that Y(C∗n) is of order Op(1) as n→∞, and therefore is a more suitable estimator

for Eθ0
[αn∇Ln(θ0)]. In the next section we consider other alternatives.

4. An integral-type estimator

As mentioned in the introduction, our second proposed estimator is obtained by first deriving

an alternative representation for Eθ0
[αn∇Ln(θ0)] in terms of a discrete stochastic integral. More

precisely, we exploit the martingale properties of ∇Ln(θ0) to obtain that:

Eθ0
[αn∇Ln(θ0)] =Eθ0

[
1

n

n−1∑
l=0

f(Φl)
n∑
k=1

Dk

]

=
1

n

n∑
k=1

k−1∑
l=0

Eθ0
[f(Φl)Eθ0

[Dk|Fk−1]] +Eθ0

[
1

n

n−1∑
k=1

n−1∑
l=k

f(Φl)Dk

]

=Eθ0

[
1

n

n−1∑
k=1

n−1∑
l=k

f(Φl)Dk

]
,

where Di
k = ∂

∂θi
p(θ0,Φk−1,Φk) and Dk = (D1

k, . . . ,D
d
k)
′. This suggests using

Yn ,
1

n

n−1∑
k=1

n−1∑
l=k

f(Φl)Dk (11)

as an estimator for Eθ0
[αn∇Ln(θ0)].

Unfortunately, just as the estimator αn∇Ln(θ0), Yn as defined above is of order Op(
√
n) as

n→∞, as the following result shows. Its proof is a straightforward consequence of Theorem 2

again.

Proposition 3. Suppose that Assumption 1 is satisfied and define for 1≤ i, j ≤ d the functions

gij according to Theorem 2. Then,

n−1/2Yn⇒
∫ 1

0

α(θ0)(1− s)IdB̂(s) n→∞,

where B̂ is a d−dimensional mean zero Brownian motion with covariance matrix Σ = (σij), with

σij = π(θ0)gij for 1≤ i, j ≤ d, and I is the identity matrix of Rd×d.
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As before, we can try to solve the problem of the unboundedness of Yn by using a centered

estimator of the form

Y∗n ,
1

n

n−1∑
k=1

n−1∑
l=k

(f(Φl)−α(θ0))Dk.

This modification turns out to be the right one, and we obtain the following convergence result for

this new estimator.

Proposition 4. Suppose that Assumption 1 is satisfied and define for 0≤ i, j ≤ d the functions

gij according to Theorem 2. Then,

Y∗n⇒
∫ 1

0

(B0(1)−B0(s))I dB̂(s) n→∞

where B(t) = (B0(t),B1(t), . . . ,Bd(t))
′ is a (d+ 1)-dimensional mean zero Brownian motion with

covariance matrix Σ = (σij), where σij = π(θ0)gij for 0≤ i, j ≤ d, B̂(t) = (B1(t), . . . ,Bd(t))
′, and I

is the identity matrix of Rd×d.

Proof. Let Sn(t) = bntc(αbntc−α(θ0)) =
∑bntc−1

j=0 (f(Φj)−α(θ0)), and note that by Theorem 2

we have

n−1/2
(
Sn, ∇Lbn·c(θ0)

′)⇒B′ n→∞,

in D([0,1],Rd+1), where B(t) = (B0(t),B1(t), . . . ,Bd(t))
′ is a (d+1)-dimensional mean zero Brown-

ian motion with covariance matrix Σ. Now define the process Ŵn(t) =
∑n−1

j=bntc(f(Φj)−α(θ0)) with

the convention that Ŵn(1)≡ 0. It follows that Ŵn(t) = Sn(1)−Sn(t) and the continuous mapping

theorem gives

n−1/2
(
Ŵn(·),∇Lbn·c(θ0)

′
)
⇒ (B0(1)−B0(·),B1(·), . . . ,Bd(·)) n→∞ (12)

in D([0,1],Rd+1).

Next, define the processes Xn(t) = n−1/2Ŵn(t)I, X(t) = (B0(1) − B0(t))I, Zn(t) =

n−1/2∇Lbntc(θ0), and Z(t) = (B1(t), . . . ,Bd(t))
′. Let Gn,t = Fbntc. Clearly, {Xn(t) : t ∈ [0,1]} and

{Zn(t) : t∈ [0,1]} are {Gn,t}-adapted and Zn(t) is a {Gn,t}−martingale. Also, for ti = i/n,

Y∗n =
1

n

n−1∑
k=1

n−1∑
l=k

(f(Φl)−α(θ0))Dk =
n−1∑
k=1

Xn(tk−1)(Zn(tk)−Zn(tk−1)) =

∫ 1− 1
n

0

Xn(s−)dZn(s).

The same steps used in the proof of Proposition 3 show that the conditions of Theorem 2.7 of

Kurtz and Protter (1991) are satisfied, and we obtain that(
Xn,Zn,

∫ 1− 1
n

0

Xn dZn

)
⇒
(
X,Z,

∫ 1

0

X dZ

)
n→∞

in D([0,1],Rd×d×Rd×Rd). �
It follows that Y∗n is a suitable estimator for Eθ0

[αn∇Ln(θ0)]. It remains to compare Y∗n to

Y(C∗n) from Section 3.
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5. Computation of the asymptotic variance

The two previous sections provide details on two potential estimators for Eθ0
[αn∇Ln(θ0)], namely,

Y(C∗n) = (αn−α(θ0))∇Ln(θ0)

and

Y∗n =
1

n

n−1∑
k=1

n−1∑
j=k

(f(Φj)−α(θ0))Dk,

where Dk =∇p(θ0,Φk−1,Φk). Both of these estimators have the property, under Assumption 1,

that their expectation converges to ∇α(θ0), i.e.,

Eθ0
[Y(C∗n)]→∇α(θ0) and Eθ0

[Y∗n]→∇α(θ0),

as n→∞ (Theorem 1), and unlike the estimators given in (10) and (11), they have order Op(1)

(Propositions 2 and 4). For comparison purposes we compute in this section the variance of these

limiting distributions.

First, by Proposition 2 we have Y(C∗n)⇒Z0 Ẑ, where Z = (Z0,Z1, . . . ,Zd)
′ is a (d+1)-dimensional

multivariate normal with covariance matrix Σ and Ẑ = (Z1, . . . ,Zd)
′. Therefore, by Isserlis’ theorem,

the (i, j)th component, 1≤ i, j ≤ d, of the limiting distribution’s covariance matrix is given by

Covθ0
(Z0 Ẑ)ij =Eθ0

[Z2
0ZiZj]−Eθ0

[Z0Zi]Eθ0
[Z0Zj]

= (σ00σij + 2σ0iσ0j)−σ0iσ0j

= σ00σij +σ0iσ0j. (13)

Similarly, by Proposition 4 we have Y∗n ⇒
∫ 1

0
(B0(1) − B0(s))IdB̂(s), where B(t) =

(B0(t),B1(t), . . . ,Bd(t))
′ is a (d+ 1)-dimensional Brownian motion with covariance matrix Σ and

B̂(t) = (B1(t), . . . ,Bd(t))
′. Since the calculation of the covariance of the limiting distribution in this

case is somewhat lengthier, we state the result in the following lemma and postpone its proof to

Section 6.

Lemma 4. Let B(t) = (B0(t),B1(t), . . . ,Bd(t))
′ be a (d+ 1)-dimensional Brownian motion with

covariance matrix Σ. Let I =
∫ 1

0
(B0(1)−B0(s))I dB̂(s), where I is the Rd×d identity matrix and

B̂(t) = (B1(t), . . . ,Bd(t))
′. Then, the (i, j)th component of the covariance matrix of I is given by

Covθ0
(I)ij =

σ00σij
2

. (14)

To simplify the notation let

A= Covθ0
(Z0 Ẑ) and B = Covθ0

(I)
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denote the asymptotic covariances of Y(C∗n) and Y∗n, respectively. Next define v =

(σ01, σ02, . . . , σ0d)
′ and note that (13) and (14) give

A= 2B+ vv′.

We now compare the generalized variances of the two estimators, that is, the determinants of their

covariance matrices. Provided B is positive definite we obtain

det(A) = det(2B+ vv′)

= det(2B)det

(
I +

1

2
B−1vv′

)
= det(2B)

(
1 +

1

2
v′B−1v

)
(by Sylvester’s determinant theorem)

= 2d det(B)

(
1 +

1

2
v′B−1v

)
,

where I is the Rd×d identity matrix. Since B is positive definite, so is B−1, and therefore v′B−1v≥ 0.

We conclude that

det(A)≥ 2d det(B),

which suggests that Y∗n is a better estimator for ∇α(θ0) than Y(C∗n).

6. Proofs

This last section of the paper contains all the proofs that were not given in the prior sections. The

first one corresponds to the martingale properties of ∇Ln(θ0).

Proof of Lemma 2. We start by noting that for any θ ∈Θ and 1≤ i≤ d,

∂

∂θi
Ln(θ) =

∂

∂θi

n∏
j=1

p(θ,Φj−1,Φj) =
n∑
j=1

Ln(θ)

p(θ,Φj−1,Φj)
· ∂
∂θi

p(θ,Φj−1,Φj)

=Ln(θ)
n∑
j=1

∂

∂θi
log p(θ,Φj−1,Φj).

Since Ln(θ0)≡ 1, it follows that

∇Ln(θ0) =
n∑
j=1

Dj.

Next, note that for any fixed x∈X we have∣∣∣∣∣ ∂∂θi
∫
X

p(θ, x, y)P (θ0, x, dy)

∣∣∣∣
θ=θ0

−
∫
X

∂

∂θi
p(θ0, x, y)P (θ0, x, dy)

∣∣∣∣∣
= lim

h→0

∣∣∣∣∫
X

(
p(θ0 +hei, x, y)− p(θ0, x, y)

h
− ∂

∂θi
p(θ0, x, y)

)
P (θ0, x, dy)

∣∣∣∣
≤ lim

h→0
sup

g:|g|≤V

∣∣∣∣∫
X

g(y)

(
p(θ0 +hei, x, y)− p(θ0, x, y)

h
− ∂

∂θi
p(θ0, x, y)

)
P (θ0, x, dy)

∣∣∣∣
≤ V (x) lim

h→0

∣∣∣∣∣∣∣∣∣∣∣∣P (θ0 +hei)−P (θ0)

h
−P (i)(θ0)

∣∣∣∣∣∣∣∣∣∣∣∣
V

.
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Therefore, by Assumption 1(v),

∂

∂θi

∫
X

p(θ, x, y)P (θ0, x, dy)

∣∣∣∣
θ=θ0

=

∫
X

∂

∂θi
p(θ0, x, y)P (θ0, x, dy)

for all x∈X. It follows that

Eθ0
[Di

k|Fk−1] =Eθ0

[
∂

∂θi
p(θ0,Φk−1,Φk)

∣∣∣∣Φk−1

]
=

∫
X

∂

∂θi
p(θ0,Φk−1, y)P (θ0,Φk−1, dy)

=
∂

∂θi

∫
X

p(θ,Φk−1, y)P (θ0,Φk−1, dy)

∣∣∣∣
θ=θ0

= 0 (since the integral is equal to one for all θ),

which establishes that Mn ,∇Ln(θ0) is a martingale. To see that it is square integrable let Mn =

(M 1
n, . . . ,M

d
n)′ and note that Eθ0,x[(M

i
n)2] =

∑n

k=1Eθ0
[(Di

k)
2], and

Eθ0
[(Di

k)
2] =Eθ0

[Eθ0
[(Di

k)
2|Fk−1]]

=Eθ0

[∫
X

(
∂

∂θi
p(θ0,Φk−1, y)

)2

P (θ0,Φk−1, dy)

]
=Eθ0

[gii(Φk−1)],

which is finite since |gii|V <∞ by Assumption 1(vi) and Eθ0
[V (Φk−1)]<∞. �

The next proof corresponds to the martingale constructed using the solution to Poisson’s equa-

tion.

Proof of Lemma 3. We start by pointing out that by Lemma 1, the chain Φ is V -ergodic for each

θ ∈Bε(θ0), and therefore, π(θ0)V <∞. Also, by Assumption 1(vii), we have that π(θ0)f
2 <∞.

We now proceed to show the existence of a solution f̂ to Poisson’s equation. To this end, note

that by Jensen’s inequality and Assumption 1(iv) we have

P (θ0)
√
V (x)≤

√
P (θ0)V (x)≤

√
λV (x) + b1K(x)≤

√
λV (x) +

√
b1K(x). (15)

Next, define Ṽ (x) = (1−
√
λ)−1(1∨ κ)

√
V (x), where κ= |f |√V and x∨ y = max{x, y}. Using (15)

we obtain

P (θ0)Ṽ (x) = (1−
√
λ)−1(1∨κ)P (θ0)

√
V (x)

≤ (1−
√
λ)−1(1∨κ)

(√
λV (x) +

√
b1K(x)

)
=
√
λṼ (x) + (1−

√
λ)−1(1∨κ)

√
b1K(x)

= Ṽ (x)− (1∨κ)
√
V (x) + (1−

√
λ)−1(1∨κ)

√
b1K(x).
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It follows that condition (V3) in Meyn and Tweedie (1993) (see equation (14.16) in Meyn and

Tweedie (1993) or equation (8) in Glynn and Meyn (1996)) is satisfied with Ṽ everywhere finite,

(1∨κ)
√
V ≥ 1, and K a small set (hence K petite). Moreover, by Jensen’s inequality,

π(θ0)Ṽ = (1−
√
λ)−1(1∨κ)π(θ0)

√
V ≤ (1−

√
λ)−1(1∨κ)

√
π(θ0)V <∞.

Then, since |f | ≤ (1 ∨ κ)
√
V , Theorem 2.3 in Glynn and Meyn (1996) (Theorem 17.4.2 in Meyn

and Tweedie (1993)) ensures that there exists a solution f̂ to Poisson’s equation satisfying |f̂ | ≤
c0(Ṽ + 1) for some constant c0 <∞. This last inequality also implies that π(θ0)f̂

2 <∞. Choose

c1 = 2c0(1−
√
λ)−1(1∨κ) to obtain the statement of the lemma.

It remains to show that Zn is a square-integrable martingale. Clearly,

Eθ0

[
f̂(Φk)−P (θ0)f̂(Φk−1)

]
=Eθ0

[
Eθ0

[
f̂(Φk)

∣∣∣Fk−1]−P (θ0)f̂(Φk−1)
]

= 0,

so Zn is a martingale. To see that it is square-integrable note that

Eθ0

[(
f̂(Φk)−P (θ0)f̂(Φk−1)

)2
]

=Eθ0

[
(f(Φk)−π(θ0)f)

2
]

≤Eθ0

[
f(Φk)

2
]

+Eθ0
[|f(Φk)|]π(θ0)f + (π(θ0)f)

2
.

Since |f |√V <∞ and both Eθ0
[V (Φk)]<∞ and π(θ0)V <∞, then the above expression is finite,

which completes the proof. �

Next, we give the proof of Theorem 1, which states that under Assumption 1 the expectation of

αn∇Ln(θ0) converges to ∇α(θ0).

Proof of Theorem 1. Define M i
n =

∑n

j=1D
i
j, 1≤ i≤ d as in Lemma 2, and

Zn =
n∑
k=1

(
f̂(Φk)−P (θ0)f̂(Φk−1)

)
, ξk =Zk−Zk−1,

as in Lemma 3. By those same lemmas we have that M i
n and Zn are square-integrable martingales.

Next, note that

Eθ0
[αn∇Ln(θ0)]i =Eθ0,x[αnM

i
n]

=Eθ0
[(αn−α(θ0))M

i
n]

=
1

n
Eθ0

[f̂(Φ0)M
i
n]− 1

n
Eθ0

[f̂(Φn)M i
n] +

1

n

n∑
k=1

Eθ0
[ξkM

i
n]

=
1

n

n∑
j=1

Eθ0
[f̂(Φ0)D

i
j]−

1

n
Eθ0

[f̂(Φn)M i
n] +

1

n

n∑
k=1

n∑
j=1

Eθ0
[ξkD

i
j]

=− 1

n
Eθ0

[f̂(Φn)M i
n] +

1

n

n∑
k=1

k∑
j=1

Eθ0
[ξkD

i
j]

=− 1

n
Eθ0

[f̂(Φn)M i
n] +

1

n

n∑
k=1

Eθ0
[ξkD

i
k],



Author: Likelihood Ratio Gradient Estimation
Stochastic Systems 00(0), pp. 000–000, c© 0000 INFORMS 17

where in the fifth equality we used the fact that the {Di
j} are martingale differences to obtain that

Eθ0

[
f̂(Φ0)D

i
j

]
= Eθ0

[
f̂(Φ0)Eθ0

[
Di
j|F0

]]
= 0 for j > 0 and Eθ0

[
ξkD

i
j

]
= Eθ0

[
ξkEθ0

[
Di
j|Fk

]]
= 0

for j > k, and in the sixth equality we used the observation that the {ξk} are also martingale

differences to get Eθ0

[
ξkD

i
j

]
=Eθ0

[
Di
jEθ0

[ξk|Fj]
]

= 0 for j < k.

To show that 1
n

∣∣∣Eθ0
[f̂(Φn)M i

n]
∣∣∣→ 0 as n→∞, note that by the Cauchy-Schwarz inequality

1

n

∣∣∣Eθ0
[f̂(Φn)M i

n]
∣∣∣≤ 1

n

(
Eθ0

[f̂(Φn)2]
)1/2 (

Eθ0
[(M i

n)2]
)1/2

=

(
1

n
Eθ0

[f̂(Φn)2]

)1/2
(

1

n

n∑
j=1

Eθ0
[(Di

j)
2]

)1/2

.

Also, by Lemma 3 we have f̂2 ≤ c1V , and since by Lemma 1 Φ is V -ergodic, we obtain that

Eθ0
[f̂(Φn)2]→ π(θ0)f̂

2 <∞ as n→∞. This in turn implies that 1
n
Eθ0

[f̂(Φn)2]→ 0 as n→∞.

For the other term we have by Assumption 1(vi) that |gii|V <∞, and therefore Eθ0
[gii(Φn)]→

π(θ0)gii <∞. Hence,

lim
n→∞

1

n

n∑
j=1

Eθ0
[(Di

j)
2] = lim

n→∞

1

n

n∑
j=1

Eθ0
[gii(Φj−1)] = π(θ0)gii.

We conclude that 1
n

∣∣∣Eθ0
[f̂(Xn)M i

n]
∣∣∣→ 0 as n→∞.

To show that 1
n

∑n

k=1Eθ0
[ξkD

i
k]→ ∂

∂θi
α(θ0) note that

Eθ0
[ξkD

i
k] =Eθ0

[Eθ0
[ξkD

i
k|Fk−1]]

=Eθ0

[∫
X

(
f̂(y)−P (θ0)f̂(Φk−1)

) ∂

∂θi
p(θ0,Φk−1, y)P (θ0,Φk−1, dy)

]
=Eθ0

[∫
X

f̂(y)
∂

∂θi
p(θ0,Φk−1, y)P (θ0,Φk−1, dy)

]
−Eθ0

[
P (θ0)f̂(Φk−1)

∫
X

∂

∂θi
p(θ0,Φk−1, y)P (θ0,Φk−1, dy)

]
=Eθ0

[∫
X

f̂(y)
∂

∂θi
p(θ0,Φk−1, y)P (θ0,Φk−1, dy)

]
,

where we have used the observation that
∫
X

∂
∂θi
p(θ0, x, y)P (θ0, x, dy) =

∂
∂θi

∫
X
p(θ0, x, y)P (θ0, x, dy) = 0 for any x∈X. Let hi(x) =

∫
X
f̂(y) ∂

∂θi
p(θ0, x, y)P (θ0, x, dy) and note

that by the Cauchy-Schwarz inequality

|hi(x)| ≤
(∫

X

f̂2(y)P (θ0, x, dy)

)1/2
(∫

X

(
∂

∂θi
p(θ0, x, y)

)2

P (θ0, x, dy)

)1/2

=
(
P (θ0)f̂

2(x)
)1/2

(gii(x))
1/2

≤ c1 (P (θ0)V (x))
1/2

(|gii|V V (x))
1/2

≤ c1 (|gii|V V (x)(λV (x) + b))
1/2

≤ c1 (|gii|V (λ+ b))
1/2
V (x),
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and therefore |hi|V <∞. It follows from the same arguments used above that

lim
n→∞

1

n

n∑
k=1

Eθ0
[ξkD

i
k] = lim

n→∞

1

n

n∑
k=1

Eθ0
[hi(Φk−1)] = π(θ0)hi,

with the limit π(θ0)hi well-defined and finite. It only remains to show that π(θ0)hi = ∂
∂θi
α(θ0). To

do this first note that

∂

∂θi
α(θ0) =

∂

∂θi

∫
X

f(x)π(θ, dx)

∣∣∣∣
θ=θ0

=
∂

∂θi

∫
X

(
f̂(x)−P (θ0)f̂(x) +α(θ0)

)
π(θ, dx)

∣∣∣∣
θ=θ0

=
∂

∂θi

∫
X

(
f̂(x)−P (θ0)f̂(x)

)
π(θ, dx)

∣∣∣∣
θ=θ0

= lim
h→0

∫
X

(
f̂(x)−P (θ0)f̂(x)

) π(θ0 +hei, dx)−π(θ0, dx)

h

= lim
h→0

∫
X

(
f̂(x)−P (θ0)f̂(x)

) π(θ0 +hei, dx)

h

= lim
h→0

∫
X

(
f̂(x)−P (θ0 +hei)f̂(x) +P (θ0 +hei)f̂(x)−P (θ0)f̂(x)

) π(θ0 +hei, dx)

h

= lim
h→0

∫
X

(
P (θ0 +hei)f̂(x)−P (θ0)f̂(x)

h

)
π(θ0 +hei, dx),

where in the fifth and seventh steps we used the identity π(θ)P (θ) = π(θ) for all θ ∈Bε(θ0). Next,

note that hi(x) = P (i)(θ0)f̂(x), from where it follows that∣∣∣∣π(θ0)hi−
∂

∂θi
α(θ0)

∣∣∣∣
=

∣∣∣∣∣
∫
X

P (i)(θ0)f̂(x)π(θ0, dx)− lim
h→0

∫
X

(
P (θ0 +hei)f̂(x)−P (θ0)f̂(x)

h

)
π(θ0 +hei, dx)

∣∣∣∣∣
≤ lim

h→0

∣∣∣∣∫
X

P (i)(θ0)f̂(x) (π(θ0, dx)−π(θ0 +hei, dx))

∣∣∣∣ (16)

+ lim
h→0

∣∣∣∣∣
∫
X

(
P (i)(θ0)f̂(x)− P (θ0 +hei)f̂(x)−P (θ0)f̂(x)

h

)
π(θ0 +hei, dx)

∣∣∣∣∣ . (17)

It remains to show that the last two limits are zero. To analyze (16) recall that |hi|V <∞, from

where it follows that (16) is bounded by

lim
h→0
||π(θ0)−π(θ0 +hei)||V = 0 (by Lemma 1).

And to show that (17) is zero as well note that∣∣∣∣∣P (i)(θ0)f̂(x)− P (θ0 +hei)f̂(x)−P (θ0)f̂(x)

h

∣∣∣∣∣
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≤ |f̂ |V
∣∣∣∣∣∣∣∣P (i)(θ0, x, ·)−

P (θ0 +hei, x, ·)−P (θ0, x, ·)
h

∣∣∣∣∣∣∣∣
V

≤ |f̂ |V V (x)

∣∣∣∣∣∣∣∣∣∣∣∣P (i)(θ0)−
P (θ0 +hei)−P (θ0)

h

∣∣∣∣∣∣∣∣∣∣∣∣
V

,

which combined with π(θ0)V <∞ gives that (17) is bounded by

lim
h→0

∫
X

|f̂ |V V (x)

∣∣∣∣∣∣∣∣∣∣∣∣P (i)(θ0)−
P (θ0 +hei)−P (θ0)

h

∣∣∣∣∣∣∣∣∣∣∣∣
V

π(θ0 +hei, dx)

= |f̂ |V lim
h→0

∣∣∣∣∣∣∣∣∣∣∣∣P (i)(θ0)−
P (θ0 +hei)−P (θ0)

h

∣∣∣∣∣∣∣∣∣∣∣∣
V

π(θ0 +hei)V

≤ |f̂ |V lim
h→0

∣∣∣∣∣∣∣∣∣∣∣∣P (i)(θ0)−
P (θ0 +hei)−P (θ0)

h

∣∣∣∣∣∣∣∣∣∣∣∣
V

(π(θ0)V + ||π(θ0 +hei)−π(θ0)||V ) = 0.

This completes the proof. �

The following is the proof of the main weak convergence theorem that is used to describe the

behavior of all four estimators considered in Sections 3 and 4. It is essentially an application of the

Functional Central Limit Theorem for multivariate martingales found in Whitt (2007) (see also

Theorems 1.4 and 1.2 in Chapter 7 of Ethier and Kurtz (1986)).

Proof of Theorem 2. For m ∈N let Zm =
∑m

k=1

(
f̂(Φk)−P (θ0)f̂(Φk−1)

)
and Mm =∇Lm(θ0).

Next, define the process Xn(t) = (X0
n(t),X1

n(t), . . . ,Xd
n(t))′ = n−1/2

(
Zbntc,M

′
bntc

)′
and the filtra-

tions Gn,t = Fbntc = σ(Φ0, . . . ,Φbntc). Note that by Lemmas 2 and 3 {Xn(t) : t ∈ [0,1]} is a square

integrable martingale with respect to Gn,t. Moreover, by (9) we have(
n−1/2bntc(αbntc−α(θ0)), n

−1/2∇Lbntc(θ0)
′)=

(
n−1/2(f̂(Φ0)− f̂(Φbntc)), 0

′
)

+Xn(t),

where 0 is the zero vector in Rd. Note that

sup
0≤t≤1

n−1/2|f̂(Φ0)− f̂(Φbntc))| ≤ 2 max
0≤k≤n

|f̂(Φk)|
n1/2

.

Since Φ is V -ergodic and |f̂2|V <∞, Theorem 17.3.3 in Meyn and Tweedie (1993) gives

max
1≤k≤n

(f̂(Φk))
2

n
→ 0 a.s. P (θ),

which in turn implies that
(
n−1/2(f̂(Φ0)− f̂(Φbntc)), 0

′
)
⇒ 0′ in D([0,1],Rd+1). It follows by Slut-

sky’s lemma that it suffices to show that Xn⇒B in D([0,1],Rd+1). We will do so by showing that

Xn satisfies condition (ii) of Theorem 2.1 in Whitt (2007).

Let ξnk = Xn(k/n) −Xn((k − 1)/n) and consider the matrix An = An(t) ∈ R(d+1)×(d+1) whose

(i, j)th component is given by

Aijn (t) =

bntc∑
k=1

Eθ0
[ (ξnk)i(ξ

n
k)j|Fk−1] .
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Then X i
n(t)Xj

n(t)−Aijn (t) is a martingale adapted to Gn,t for each 0≤ i, j ≤ d, and therefore, the

Aijn = 〈X i
n,X

j
n〉 are the predictable quadratic-covariation processes of Xn. Also, for 1≤ i, j ≤ d we

have

Aijn (t) =
1

n

bntc∑
k=1

Eθ0

[
∂

∂θi
p(θ0,Φk−1,Φk)

∂

∂θj
p(θ0,Φk−1,Φk)

∣∣∣∣Fk−1]

=
1

n

bntc∑
k=1

∫
X

∂

∂θi
p(θ0,Φk−1, y)

∂

∂θj
p(θ0,Φk−1, y)P (θ0,Φk−1, dy)

=
1

n

bntc∑
k=1

gij(Φk−1),

and for 1≤ i≤ d,

A0i
n (t) =Ai0n (t) =

1

n

bntc∑
k=1

Eθ0

[
∂

∂θi
p(θ0,Φk−1,Φk)

(
f̂(Φk)−P (θ0)f̂(Φk−1)

)∣∣∣∣Fk−1]

=
1

n

bntc∑
k=1

∫
X

∂

∂θi
p(θ0,Φk−1, y)f̂(y)P (θ0,Φk−1, dy)

=
1

n

bntc∑
k=1

g0i(Φk−1).

Similarly,

A00
n (t) =

1

n

bntc∑
k=1

g00(Φk−1).

Since π(θ0)|gij| ≤ π(θ0)(giigjj)
1/2 ≤ (π(θ0)gii)

1/2(π(θ0)gjj)
1/2 <∞ for each 0≤ i, j ≤ d, we have by

Theorem 17.0.1 in Meyn and Tweedie (1993) that

bntc
n
· 1

bntc

bntc∑
k=1

gij(Φk−1)→ tπ(θ0)gij a.s. P (θ).

Also, for each 0≤ i, j ≤ d,

lim
n→∞

Eθ0

[
sup
t∈[0,1]

|Aijn (t)−Aijn (t−)|

]
= lim

n→∞
Eθ0

[
max
1≤k≤n

|Eθ0
[ (ξnk)i(ξ

n
k)j|Fk−1]|

]
= lim

n→∞

1

n
Eθ0

[
max
1≤k≤n

|gij(Φk−1)|
]

≤ |gij|V lim
n→∞

1

n
Eθ0

[
max
1≤k≤n

V (Φk−1)

]
≤ |gij|V lim

n→∞

1

n
Eθ0

[
max
1≤k≤n

(√
n+V (Φk−1)1(V (Φk−1)>

√
n)
)]

≤ |gij|V lim
n→∞

1

n

n∑
k=1

Eθ0

[
V (Φk−1)1(V (Φk−1)>

√
n)
]
.
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To see that the last expression converges to zero let hm(x) = V (x)1(V (x) > m), and note that

Eθ0
[hm(Φk)]→ π(θ0)hm <∞ as k→∞, and monotone convergence gives π(θ0)hm→ 0 as m→∞,

therefore we can choose N ∈N large enough so that π(θ0)hN < δ. It follows that

lim
n→∞

1

n

n∑
k=1

Eθ0

[
h√n(Φk−1)

]
≤ lim

n→∞

1

n

n∑
k=1

Eθ0
[hN(Φk−1)] = π(θ0)hN < δ,

and since δ > 0 was arbitrary, the limit is zero.

For a vector x = (x0, x1, . . . , xd)
′ ∈ Rd+1 let |x| =

(∑d

i=0 x
2
i

)1/2

. Then, by similar arguments as

those used above,

lim
n→∞

Eθ0

[
sup
t∈[0,1]

|Xn(t)−Xn(t−)|2
]

= lim
n→∞

Eθ0

[
max
1≤k≤n

|ξnk |
2

]

=
d∑
i=0

lim
n→∞

Eθ0

[
max
1≤k≤n

(ξnk)2i

]

≤
d∑
i=0

lim
n→∞

n∑
k=1

Eθ0

[
(ξnk)2i 1((ξnk)2i >n

−1/2)
]

=
d∑
i=0

lim
n→∞

1

n

n∑
k=1

Eθ0

[
ĥi,√n(Φk−1)

]
,

where

ĥi,m(x) =

∫
X

(
∂

∂θi
p(θ0, y, x)

)2

1

((
∂

∂θi
p(θ0, y, x)

)2

>m

)
P (θ0, x, dy), 1≤ i≤ d,

ĥ0,m(x) =

∫
X

(
f̂(y)−P (θ0)f̂(x)

)2

1

((
f̂(y)−P (θ0)f̂(x)

)2

>m

)
P (θ0, x, dy).

Since we have that ĥi,m ≤ |gii|V V for all 0≤ i≤ d, then Eθ0
[ĥi,m(Φk−1)]→ π(θ0)ĥi,m <∞ for each

fixed m∈N and the same arguments used before give

lim
n→∞

1

n

n∑
k=1

Eθ0

[
ĥi,√n(Φk−1)

]
= 0.

It now follows from Theorem 2.1 in Whitt (2007) that Xn⇒B in D([0,1],Rd+1). �

The next proof corresponds to Proposition 3, which shows the lack of convergence of the discrete

integral

1

n

n−1∑
k=1

n−1∑
l=k

f(Φl)Dk.

Proof of Proposition 3. First note that the V -ergodicity of Φ, the observation that π(θ0)|f |<
∞, and Theorem 17.0.1 in Meyn and Tweedie (1993), gives for any t∈ [0,1],

Qn(t) =
1

n

n−1∑
l=0

f(Φl)−
bntc+ 1

n
· 1

bntc+ 1

bntc∑
l=0

f(Φl)→ α(θ0)(1− t) =Q(t) a.s. P (θ0),
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as n→∞. Moreover,

n(Qn(t)−Q(t)) =
n−1∑

l=bntc+1

(f(Φl)−α(θ0)) + (nt−bntc− 1)α(θ0)

= Sn(1)−Sn(t) + (nt−bntc− 1)α(θ0),

where Sn(t) =
∑bntc−1

j=0 (f(Φj)−α(θ0)) and n−1/2Sn⇒B0 in D([0,1],R) by Theorem 2, with B0 a

mean zero Brownian motion. It follows that Qn(t)−Q(t)⇒ 0 in D([0,1],R). Also, by Theorem 2

again we have that n−1/2∇Lbn·c(θ0)⇒ B̂ in D([0,1],Rd), where B̂ is a zero-mean d−dimensional

Brownian motion with covariance matrix Σ.

It follows that since Q is a non-random element of D([0,1],R),(
Qn, n

−1/2∇Lbn·c(θ0)
′)⇒ (Q, B̂′) n→∞ (18)

in D([0,1],Rd+1).

Next, define the processes Xn(t) =Qn(t)I, X(t) =Q(t)I, Zn(t) = n−1/2∇Lbntc(θ0), and Z(t) =

B̂(t), where I is the identity matrix of Rd×d. Define Gn,t = Fbntc. Clearly, Xn and Zn are {Gn,t}-

adapted and Zn is a {Gn,t}-martingale. Also, for ti = i/n,

n−1/2Yn =
1

n1/2

1

n

n−1∑
k=1

n−1∑
l=k

f(Φl)Dk =
n−1∑
k=1

Xn(tk−1)(Zn(tk)−Zn(tk−1)) =

∫ 1− 1
n

0

Xn(s−)dZn(s).

Consider now the process

[Zn]t =
1

n

bntc∑
k=1

DkD
′
k

and note that the (i, j)th element of |Eθ0
[[Zn]t]| (1≤ i, j ≤ d) is∣∣∣∣∣ 1n

bntc∑
k=1

Eθ0
[Di

kD
j
k]

∣∣∣∣∣=
∣∣∣∣∣ 1n
bntc∑
k=1

Eθ0

[
Eθ0

[Di
kD

j
k|Fk−1]

]∣∣∣∣∣=
∣∣∣∣∣Eθ0

[
1

n

bntc∑
k=1

gij(Φk−1)

]∣∣∣∣∣
≤ t sup

n
Eθ0

[∣∣∣∣∣ 1n
n∑
k=1

gij(Φk−1)

∣∣∣∣∣
]
.

For each α> 0 let ταn = 2α and note that Pθ0
(ταn ≤ α) = 0≤ 1/α and

sup
n
Eθ0

[[Zn]t∧ταn ]≤ sup
n
Eθ0

[[Zn]2α]≤ 2α max
1≤i,j≤d

sup
n
Eθ0

[∣∣∣∣∣ 1n
n∑
k=1

gij(Φk−1)

∣∣∣∣∣
]
<∞.

Finally, by (18) we have (Xn,Zn)⇒ (X,Z) in D([0,1],Rd×d × Rd). Therefore, the conditions of

Theorem 2.7 of Kurtz and Protter (1991) are satisfied and we have(
Xn,Zn,

∫ 1− 1
n

0

Xn dZn

)
⇒
(
X,Z,

∫ 1

0

X dZ

)
n→∞

in D([0,1],Rd×d×Rd×Rd). �
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The last proof in the paper corresponds to the calculation of the variance of
∫ 1

0
(B0(1) −

B0(s))I dB̂(s).

Proof of Lemma 4. Note that we can write the limit I as B0(1)B̂(1) −
∫ 1

0
B0(s)I dB̂(s). Let

U = B0(1)B̂(1) and V =
∫ 1

0
B0(s)I dB̂(s), then, since Eθ0

[V] = 0, the covariance matrix of the

limiting distribution is given by

Covθ0
(I) =Eθ0

[(U−V−Eθ0
[U])(U−V−Eθ0

[U])′]

=Eθ0
[UU′]−Eθ0

[UV′]−Eθ0
[U]Eθ0

[U]′−Eθ0
[VU′] +Eθ0

[VV′]

= Covθ0
(U)−Eθ0

[UV′]− (Eθ0
[UV′])

′
+Eθ0

[VV′].

Note that U
D
= Z0Ẑ, i.e., the limiting distribution of Y(C∗n) (see (13))), so the (i, j)th com-

ponent of Covθ0
(U) is σ00σij + σ0iσ0j. To compute the remaining expectations let W(t) =

(W0(t),W1(t), . . . ,Wd(t))
′ be a standard (d+ 1)-dimensional Brownian motion and write Σ =AA′,

where A= (aij)∈R(d+1)×(d+1). Then, we can rewrite

V =

∫ 1

0

B0(s)AdW(s), B(t) =

∫ t

0

AdW(s),

and

(Eθ0
[VV′])

ij
=Eθ0

[ViVj] =Eθ0

[∫ 1

0

B0(s)
d∑
k=0

aikdWk(s)

∫ 1

0

B0(s)
d∑
l=0

ajldWl(s)

]

=
d∑
k=0

aik

d∑
l=0

ajlEθ0

[∫ 1

0

B0(s)dWk(s)

∫ 1

0

B0(s)dWl(s)

]

=
d∑
k=0

aikajkEθ0

[(∫ 1

0

B0(s)dWk(s)

)2
]

= σij

∫ 1

0

Eθ0

[
(B0(s))

2
]
ds

= σij

∫ 1

0

σ00sds=
σ00σij

2
.

To compute Eθ0
[UV′] first note that we can write it as

(Eθ0
[UV′])

ij
=Eθ0

[UiVj] =Eθ0

[
B0(1)Bi(1)

∫ 1

0

B0(s)
d∑
k=0

cjkdWk(s)

]

=Eθ0

[
d∑

m=0

c0mWm(1)
d∑
l=0

cilWl(1)

∫ 1

0

d∑
n=0

c0nWn(s)
d∑
k=0

cjkdWk(s)

]

=
d∑

n=0

c0n

d∑
k=0

cjk

d∑
m=0

c0m

d∑
l=0

cilEθ0

[
Wm(1)Wl(1)

∫ 1

0

Wn(s)dWk(s)

]
.
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Now, for each of the remaining expectations use the product rule Wm(1)Wl(1) =
∫ 1

0
Wm(s)dWl(s)+∫ 1

0
Wl(s)dWm(s) + 1(m= l) to obtain

Eθ0

[
Wm(1)Wl(1)

∫ 1

0

Wn(s)dWk(s)

]
=Eθ0

[∫ 1

0

Wm(s)dWl(s)

∫ 1

0

Wn(s)dWk(s)

]
+Eθ0

[∫ 1

0

Wl(s)dWm(s)

∫ 1

0

Wn(s)dWk(s)

]
=

∫ 1

0

Eθ0
[Wm(s)Wn(s)]ds1(l= k)

+

∫ 1

0

Eθ0
[Wl(s)Wn(s)]ds1(m= k)

=

∫ 1

0

s1(m= n)ds1(l= k) +

∫ 1

0

s1(l= n)ds1(m= k)

=
1

2
1(m= n)1(l= k) +

1

2
1(l= n)1(m= k).

Substituting in the expression for Eθ0
[UV′] we obtain

(Eθ0
[UV′])

ij
=

1

2

d∑
n=0

c0n

d∑
k=0

cjkc0ncik +
1

2

d∑
n=0

c0n

d∑
k=0

cjkc0kcin

=
1

2
σ00σij +

1

2
σ0iσ0j = (Eθ0

[UV′])
ji
.

Therefore, the (i, j)th component, 1≤ i, j ≤ d, of the limiting distribution’s covariance matrix is

given by

Covθ0
(I)ij = σ00σij +σ0iσ0j − (σ00σij +σ0iσ0j) +

σ00σij
2

=
σ00σij

2
.

�
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