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Abstract

We study the minimal/endogenous solution R to the maximum recursion on weighted branching trees
given by

R
D
=


N

i=1

Ci Ri


∨ Q,

where (Q, N , C1, C2, . . .) is a random vector with N ∈ N ∪ {∞}, P(|Q| > 0) > 0 and nonnegative

weights {Ci }, and {Ri }i∈N is a sequence of i.i.d. copies of R independent of (Q, N , C1, C2, . . .);
D
= denotes

equality in distribution. Furthermore, when Q > 0 this recursion can be transformed into its additive
equivalent, which corresponds to the maximum of a branching random walk and is also known as a high-
order Lindley equation. We show that, under natural conditions, the asymptotic behavior of R is power-law,
i.e., P(|R| > x) ∼ H x−α , for some α > 0 and H > 0. This has direct implications for the tail behavior of
other well known branching recursions.
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1. Introduction

In recent years considerable attention [12–14,3,4,16,2,7] has been given to the characteriza-
tion and analysis of the solutions to the non homogeneous linear equation

RL
D
=

N
i=1

Ci RL ,i + Q, (1)

where (Q, N , C1, C2, . . .) is a real-valued random vector with N ∈ N ∪ {∞}, P (|Q| > 0) > 0,
and {RL ,i }i∈N is a sequence of i.i.d. random variables independent of (Q, N , C1, C2, . . .) hav-
ing the same distribution as RL . Eq. (1) has applications in a wide variety of fields, including
the analysis of divide and conquer algorithms [18,17], e.g. Quicksort [9]; the analysis of the
PageRank algorithm [19,12]; and kinetic gas theory [7]. Our work in [13,14] shows that the
so-called endogenous solution, as termed in [1], of (1), under the natural main root condition

E
N

i=1 |Ci |
α


= 1 with positive derivative 0 < E
N

i=1 |Ci |
α log |Ci |


< ∞ for some α > 0,

has the power tail behavior,

P(|RL | > t) ∼ HL t−α, t → ∞,

where 0 ≤ HL < ∞. The main tool used in deriving this result was a generalization of Goldie’s
Implicit Renewal Theorem [10] to weighted branching trees.

Motivated by a different set of applications, we study in this paper the maximum recursion on
trees given by

R
D
=


N

i=1

Ci Ri


∨ Q, (2)

where (Q, N , C1, C2, . . .) is a random vector with N ∈ N ∪ {∞}, nonnegative weights {Ci }, and
P (|Q| > 0) > 0, and {Ri }i∈N is a sequence of i.i.d. random variables independent of (Q, N ,

C1, C2, . . .) having the same distribution as R. Here and throughout the paper we use x ∨ y and
x ∧ y to denote the maximum and minimum, respectively, of x and y. We point out that by taking
the logarithm in (2) when Q > 0 a.s., we obtain the additive equivalent

X
D
=

N
i=1

(Yi + X i ) ∨ V, (3)

where X = log R, Yi = log Ci , V = log Q, and the {X i }i∈N are i.i.d. copies of X , independent
of (V, N , Y1, Y2, . . .). Note that for N ≡ 1 and V ≡ 0, (3) reduces to the classical Lindley’s
equation, satisfied by the reflected random walk; and when V ≢ 0, the recursion corresponds
to a random walk reflected on a random barrier. In general, the preceding additive equation has
been studied in the literature of branching random walks (see [1, Section 4.2]). Recursion (3) was
termed “high-order Lindley equation” and studied in the context of queues with synchronization
in [15]. Unlike the classical Lindley equation, it was shown in [15] that (3) can have multiple
solutions. A more complete analysis of the existence and the characterization of the entire family
of solutions was carried out in [6] (e.g., see Theorem 1 in [6]). In addition, it can be shown that
the study of (3) arises in the context of today’s massively parallel computing, e.g., consider a job
that is split into smaller pieces which are sent randomly to different processors, and these pieces
need to be synchronized in order to complete their processing. In addition to these applications, a



P.R. Jelenković, M. Olvera-Cravioto / Stochastic Processes and their Applications 125 (2015) 217–232 219

better understanding of (2) immediately leads to important insights to other max-plus branching
recursions. More precisely, for the case of nonnegative weights, (2) is a natural lower bound for
many other recursions on trees [1].

For all of the reasons described above, we study in this paper the tail behavior of the minimal/
endogenous solution to the maximum recursion in (2) (or (3)). Furthermore, we point out that
under iterations of the fixed-point equation (2) (or (3)), the minimal/endogenous solution is the
primary limiting value, unless one starts with very specific initial distributions (see Theorem 1(ii)
in [6]); we will discuss this in more detail in Section 3.

Our first main result, stated in Theorem 3.4, describes the tail behavior of the minimal/
endogenous solution to the maximum recursion (2) (or (3)). In this regard, the application of
the Implicit Renewal Theorem on Trees (see Theorem 3.4 [14]), under the natural conditions

E
N

i=1 Cα
i


= 1 and 0 < E

N
i=1 Cα

i log Ci


< ∞ for some α > 0, readily gives

P(R > t) ∼ Ht−α, t → ∞, (4)

where 0 ≤ H < ∞. However, the main difficulty in establishing the power-law behavior lies in
proving that H > 0. Unlike in the linear case, it is not clear that this constant should be positive
at all, since at first glance the expression which determines H in Theorem 3.4 of Section 3,

E


(Q+)α ∨

N
i=1

(Ci R+

i )α −

N
i=1

(Ci R+

i )α


,

appears just as likely to be negative. Hence, our first main contribution lies in a new sample-path
construction showing that H > 0 under no additional assumptions (besides those needed for
the application of Theorem 3.4 in [14]). Observe that in the additive case of Eq. (3), our result
yields the exponential asymptotics P(X > y) ∼ He−αy , which is the generalization of the well
known Cramér–Lundberg approximation. The latter is widely used in insurance risk theory and
queueing.

Furthermore, as an immediate corollary one obtains the strict positivity of HL in the linear
case with nonnegative (Q, N , C1, C2, . . .). In this setting, the work in [13] used a straightfor-
ward convexity argument to show that HL > 0 for α ≥ 1, but the corresponding question
for α ∈ (0, 1) was left open. The strict positivity of HL for α ∈ (0, 1) was recently resolved
in [2] as part of the more general real-valued case, but under additional assumptions that include

E
N

i=1 Cα+ϵ
i


< ∞. Note that in the additive equation (3), this extra moment assumption

corresponds to the finiteness of α + ϵ exponential moments of the {Yi }. Since the new results on
the maximum hold without such additional assumptions, Theorem 3.4 fully completes the prior
work for nonnegative (Q, N , C1, C2, . . .).

We now go back to the linear recursion (1) with real-valued weights (Q, C1, C2, . . .), which
has recently been considered in [4,14,2] (see also [7] for the multivariate case). The work in [14]
establishes the Implicit Renewal Theorem on Trees for the real-valued case and shows that,

under the usual conditions E
N

i=1 |Ci |
α


= 1 and 0 < E
N

i=1 |Ci |
α log |Ci |


< ∞, the

endogenous solution to (1) has a power tail behavior of the form HL t−α, HL ≥ 0. In that paper
the strict positivity of HL in its full generality remained open. It was this open problem that
motivated the work in [2], where it was shown, using complex analysis and analytical functions,
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Fig. 1. Weighted branching tree.

that HL > 0 under the additional assumptions N < ∞ a.s., E
N

i=1 |Ci |
α+ϵ


< ∞ and

E

N
i=1 |Ci |

α+ϵ


< ∞.

In this paper, we revisit the problem of the strict positivity of HL for the general real-valued
case using our result on the maximum equation (2) (with nonnegative weights {Ci }), under no
additional assumptions on the vector (N , C1, C2, . . .) besides those needed for Theorem 3.4
in [14]. However, we do require that Q does not reduce to a constant given (N , C1, C2, . . .),
i.e., Q can be a random, but not deterministic, function of (N , C1, C2, . . .). Our main set of
arguments is based on Lévy’s symmetrization approach.

The paper is organized as follows. Section 2 includes a brief description of the weighted
branching process. Section 3 contains our first main result about the asymptotic behavior of the
minimal/endogenous solution to the maximum recursion (2), including the strict positivity of H .
Section 4 presents our proof of the positivity of the constant HL for the general mixed-sign linear
recursion (1).

2. Model description

We use the model from [14] for defining a weighted branching tree. To this end, let N+ =

{1, 2, 3, . . .} be the set of positive integers and let U =


∞

k=0(N+)k be the set of all finite
sequences i = (i1, i2, . . . , in) ∈ U , where by convention N0

+ = {∅} contains the null sequence
∅. To ease the exposition, for a sequence i = (i1, i2, . . . , ik) ∈ U we write i|n = (i1, i2, . . . , in),
provided k ≥ n, and i|0 = ∅ to denote the index truncation at level n, n ≥ 0. Also, for i ∈ A1
we simply use the notation i = i1, that is, without the parenthesis. Similarly, for i = (i1, . . . , in)

we will use (i, j) = (i1, . . . , in, j) to denote the index concatenation operation, if i = ∅, then
(i, j) = j .

To iteratively construct the weighted branching tree T , let

(Ni, C(i,1), C(i,2), . . .)


i∈U be a

sequence of i.i.d. random vectors. The random variables {Ni}i∈U in this sequence define the
structure of the tree as follows; set N = N∅. Let A0 = {∅},

A1 = {i ∈ N : 1 ≤ i ≤ N }, and

An = {(i, in) ∈ U : i ∈ An−1, 1 ≤ in ≤ Ni}, n ≥ 2, (5)

be the set of individuals in the nth generation. Next, assign to each node i in the tree a weight Πi
according to the recursion

Πi1 = Ci1 , Π(i1,...,in) = C(i1,...,in)Π(i1,...,in−1), n ≥ 2,

where Π = Π∅ ≡ 1 is the weight of the root node. See Fig. 1.
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3. The maximum recursion: R = (
N

i=1 Ci Ri ) ∨ Q

In this section, we study the maximum fixed-point equation given by

R
D
=


N

i=1

Ci Ri


∨ Q, (6)

where (Q, N , C1, C2, . . .) is a random vector with N ∈ N∪{∞}, {Ci } ≥ 0 and P(|Q| > 0) > 0,
and {Ri }i∈N is a sequence of i.i.d. random variables independent of (Q, N , C1, C2, . . .) having
the same distribution as R. As already mentioned, the additive version of (6), given in (3), was
termed “high-order Lindley equation” and studied in the context of queues with synchronization
in [15]. The full characterization of its multiple solutions was given in [6]. More recently, a
related recursion where Q ≡ 0, N = ∞, and the {Ci } are real valued deterministic constants,
has been analyzed in [5]. The more closely related case of Q ≡ 0 and {Ci } ≥ 0 being random
was studied earlier in [11]. For this and other max-plus equations appearing in a variety of
applications see the survey by [1].

Using standard arguments, we start by constructing an endogenous solution to (6) on a tree
and then we show that this solution is finite a.s. and represents the unique limit under iterations
provided that the initial values and the weights satisfy appropriate moment conditions.

Following the notation of Section 2, define the process

Vn =


i∈An

QiΠi, n ≥ 0, (7)

on the weighted branching tree T . The convention throughout the paper is that (Q, N , C1,

C2, . . .) = (Q∅, N∅, C(∅,1), C(∅,2), . . .) denotes the random vector corresponding to the root
node. Next, define the process {R(n)

}n≥0 according to

R(n)
=

n
k=0

Vk, n ≥ 0.

It is not hard to see that R(n) satisfies the recursion

R(n)
=


N∅
j=1

C(∅, j) R(n−1)
j


∨ Q∅ =


N

j=1

C j R(n−1)
j


∨ Q, (8)

where {R(n−1)
j } are independent copies of R(n−1) corresponding to the tree starting with individ-

ual j in the first generation and ending on the nth generation. One can also verify that

Vn =

N∅
k=1

C(∅,k)


(k,i2,...,in)∈An

Q(k,i2,...,in)

n
j=2

C(k,i2,...,i j )
D
=

N
k=1

Ck V(n−1),k,

where {V(n−1),k} is a sequence of i.i.d. random variables independent of (N , C1, C2, . . .) and
having the same distribution as Vn−1.

We now define the random variable R according to

R , lim
n→∞

R(n)
=

∞
k=0

Vk . (9)
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Note that R(n) is monotone increasing sample-pathwise, so R is well defined. Also, by
monotonicity of R(n) and (8), we obtain that R solves

R =


N∅
j=1

C(∅, j) R(∞)
j


∨ Q∅ =


N

j=1

C j R(∞)
j


∨ Q,

where {R(∞)
j } j∈N are i.i.d. copies of R, independent of (Q, N , C1, C2, . . .), see also Section 2

in [6]. Clearly this implies that R, as defined by (9), is a solution in distribution to (6). However,
this solution might be ∞. Next, we establish in the following lemma the finiteness of moments
of R, and in particular that R < ∞ a.s.; its proof uses standard contraction arguments but is
included for completeness; e.g. see Theorem 6(i) in [6]. Conditions under which R is infinite a.s.
can be found in Corollary 4 in [6].

Lemma 3.1. Assume that ρβ = E
N

i=1 Cβ
i


< 1 and E[|Q|

β
] < ∞ for some β > 0. Then,

E[|R|
γ
] < ∞ for all 0 < γ ≤ β, and in particular, |R| < ∞ a.s. Moreover, if β ≥ 1, R(n)

Lβ
→ R,

where Lβ stands for convergence in (E | · |
β)1/β norm.

Proof. It follows immediately that

E

|R|

β


≤ E


∞

k=0


i∈Ak

|Qi|
βΠ β

i


=

∞
k=0

E[|Q|
β
]ρk

β =
E[|Q|

β
]

1 − ρβ

< ∞.

That R(n)
Lβ
→ R whenever β ≥ 1 follows from noting that |R(n)

− R|
β

≤
∞

k=n+1 Vk
β and the

same arguments used above. �

Although this paper focuses only on the solution R defined by (9), it is important to mention
that Eq. (6) can have multiple solutions, as the work in [6] describes. The solution R receives the
name “endogenous” since it is constructed explicitly from the weighted branching tree, and the
name “minimal” since it is the stochastically smallest solution, in the sense that any other solution
R′ to (6) satisfies P(R′ > t) ≤ P(R > t) for all t > 0. For the case when Q ≥ 0 and there exists

a unique υ > 0 such that E
N

i=1 Cυ
i


= 1 and −∞ < E

N
i=1 Cυ

i log Ci


< 0 (referred to

as the “regular case”), Theorem 1(ii) and (iii) of [6] characterizes the entire family of solutions
to (6). Moreover, under some additional technical conditions, all other solutions to (6) are given
in terms of R (M = log R in [6]) and the limit W (υ) of the martingale Wk(υ) =


i∈Ak

Π υ
i .

To better understand the nature of these other solutions, as well as to highlight the importance of
the endogenous/minimal solution R, we will next define the process {R∗

n} that is obtained from
iterating equation (6) starting from an initial value R∗

0 .
Let

R∗
n , R(n−1)

∨ Vn(R∗

0), n ≥ 1,

where

Vn(R∗

0) =


i∈An

R∗

0,iΠi, (10)

and {R∗

0,i}i∈U are i.i.d. copies of an initial value R∗

0 , independent of the entire weighted tree T Q,C .
R∗

0 is referred to as the “terminal” value in [6] (T = log R∗

0 , R∗

0 ≥ 0) since it corresponds to the
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value of the leaves in the weighted branching tree with finitely many generations. It follows from
(8) and (10) that

R∗

n+1 =

N
j=1

C j

R(n−1)
j ∨


i∈An, j

R∗

0,i

n
k=2

C( j,...,ik )

 ∨ Q =

N
j=1

C j R∗

n, j ∨ Q,

where {R(n−1)
j } are independent copies of R(n−1) corresponding to the tree starting with individ-

ual j in the first generation and ending on the nth generation, and An, j is the set of all nodes in the
(n +1)th generation that are descendants of individual j in the first generation. Moreover, {R∗

n, j }

are i.i.d. copies of R∗
n , and thus, R∗

n is equal in distribution to the process obtained by iterating
(6) with an initial condition R∗

0 . This process can be shown to converge in distribution to R for
any initial condition R∗

0 satisfying the following moment condition (see also Theorem 9 in [6]).

Lemma 3.2. Suppose E[|Q|
β
], E[|R∗

0 |
β
] < ∞ and ρβ < 1 for some β > 0, then

R∗
n ⇒ R,

with E[|R|
β
] < ∞. Furthermore, under these assumptions, the distribution of R is the unique

solution with finite β-moment to recursion (6).

Proof. The result is immediate from Lemma 5.2 in [13] by noting thatVn(R∗

0)
 ≤


i∈An

R∗

0,iΠi
 . �

Remarks 3.3. (a) Lemma 3.2 establishes a certain type of uniqueness of the solution to (6), in
the sense that R is the only possible limit for the iterative process {R∗

n} for any initial value R∗

0
possessing finite β moment with ρβ < 1. It is therefore to be expected that all other solutions
to the maximum recursion must arise from violating this assumption. (b) Theorem 1(ii) of [6]
states that in the regular case (see the comments after Lemma 3.1), if R∗

0 ≥ 0 and limt→∞ tυ

P(R∗

0 > t) = γ (υ < α), then R∗
n ⇒ R(γ ), where

P(R(γ ) ≤ t) = E

1(R ≤ t)e−γ W (υ)tυ


.

Moreover, R(γ ) solves (6) provided R < ∞ a.s. and E

W1(υ) log+ W1(υ)


< ∞.

Now we are ready to state the main result of this section, which characterizes the asymptotic
behavior of R.

Theorem 3.4. Let (Q, N , C1, C2, . . .) be a random vector with N ∈ N ∪ {∞}, {Ci } ≥ 0 and
P(|Q| > 0) > 0, and R be the solution to (6) given by (9). Suppose that there exists j ≥ 1
with P(N ≥ j, C j > 0) > 0 such that the measure P(log C j ∈ du, C j > 0, N ≥ j) is

nonarithmetic, and that for some α > 0, E[|Q|
α
] < ∞, 0 < E

N
i=1 Cα

i log Ci


< ∞ and

E
N

i=1 Cα
i


= 1. In addition, assume

1. E
N

i=1 Ci

α
< ∞, if α > 1; or,

2. E

N
i=1 Cα/(1+ϵ)

i

1+ϵ


< ∞ for some 0 < ϵ < 1, if 0 < α ≤ 1.
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Then,

P(R > t) ∼ Ht−α, P(R < −t) = o

t−α


, t → ∞,

where 0 ≤ H < ∞ is given by

H =
1

E


N

i=1
Cα

i log Ci

  ∞

0
vα−1


P(R > v) − E


N

i=1

1(Ci Ri > v)


dv

=

E


(Q+)α ∨

N
i=1

(Ci R+

i )α −

N
i=1

(Ci R+

i )α


αE


N

i=1
Cα

i log Ci

 .

Furthermore, H > 0 if and only if P(Q+ > 0) > 0.

Remarks 3.5. (a) The condition E[|Q|
α
] < ∞ is only needed to obtain the result about the

negative tail. The result about the positive tail P(R > t) only requires E[(Q+)α] < ∞. (b) The
equivalent result for the lattice case can be obtained by using the corresponding Implicit Renewal
Theorem on Trees in [14]. (c) Corollary 5 in [6] provides upper bounds for the tail behavior of
any finite solution to the maximum equation (6).

Proof. The first part of the proof about the right tail, P(R > t), will follow from an application
of the Implicit Renewal Theorem on Trees, Theorem 3.4 in [14], once we verify the finiteness of

∞

0

P(R > t) − E


N

i=1

1(Ci Ri > t)

 tα−1dt. (11)

To see that (11) is indeed finite, note that by Lemma 4.10 in [14] we have that

0 ≤


∞

0


E


N

i=1

1(Ci Ri > t)


− P


N

i=1

Ci Ri > t


tα−1dt < ∞.

Also, since R∗ ,
N

i=1 Ci Ri


∨ Q ≥

N
i=1 Ci Ri , then

0 ≤


∞

0


P(R∗ > t) − P


N

i=1

Ci Ri > t


tα−1dt

=
1
α

E

 N
i=1

Ci Ri


∨ Q

+
α

−

 N
i=1

Ci Ri

+
α

=
1
α

E


(Q+)α ∨

N
i=1

(Ci R+

i )α −

N
i=1

(Ci R+

i )α



≤
1
α

E[(Q+)α].

Combining these two observations gives that (11) is finite, and by Theorem 3.4 (a) in [14] we
obtain the result with the integral representation of H . To derive the second expression for H
follow the same steps used at the end of the proof of Theorem 4.1 in [13].
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For the negative tail, P(R < −t), simply note that

P(R < −t) = P


N

i=1

Ci Ri


∨ Q < −t


≤ P(Q < −t)

≤ P(|Q| > t) ≤ E

|Q|

α1(|Q|
α > t)


t−α,

where in the last step we used Markov’s inequality. Since E[|Q|
α
] < ∞, then E[|Q|

α1(|Q|
α >

t)] = o(1) as t → ∞, proving the result.
The rest of the proof is devoted to showing that the constant H > 0 if and only if P(Q+ > 0)

> 0. Note that if Q ≤ 0 a.s. then R+
= 0 and therefore H = 0, so it only remains to show that

H > 0 whenever P(Q+ > 0) > 0. Hence, assume from now on that P(Q+ > 0) > 0.
The main idea of the proof is to construct a minorizing random variable for R for which we

can directly estimate the expectation appearing in the numerator of H . We start by fixing 0 < δ <

E[(Q+)α] ∧ 1 and choosing α/2 < β < α and q > 0 such that ρβ < 1, E

N
i=1 Cβ

i

α/β


<

∞, and E[(Q+)α1(Q+ > q)] < δ/6; define K = β−1


∞

0


e−u

− 1 + u


u−α/β−1du < ∞.
Note that such β always exists under the assumptions of the theorem, since when 0 < α ≤ 1 we
have that for any α/(1 + ϵ) ≤ β < α,

E

 N
i=1

Cβ
i

α/β
 ≤ E

 N
i=1

C
α

1+ϵ

i

 α
β
·
(1+ϵ)β

α

 = E

 N
i=1

C
α

1+ϵ

i

1+ϵ
 < ∞,

and when α > 1 we have that for any 1 ≤ β < α,

E

 N
i=1

Cβ
i

α/β
 ≤ E

 N
i=1

Ci

 α
β
·β
 = E


N

i=1

Ci

α
< ∞.

Now let {Di, j : i ∈ U, 1 ≤ j ≤ r} be nonnegative i.i.d. random variables, independent of T ,
having the same distribution as D, where D satisfies

0 ≤ D ≤ d a.s., E[Dα
] = 1 and E[Dβ

] < 1,

(e.g., take D to have density f (x) = (α/2)xα−11(0 ≤ x ≤ 21/α)). For each i ∈ T define the
random variable

Qi = Qi

r
j=1

D(i, j),

where r ∈ N is such that

qα E[(Q+)β ]

(δ/6)(1 − ρβ)
(E[Dβ

])r < δ/6

and

K E

 N
i=1

Cβ
i

α/β
 E[(Q+)β ]

1 − ρβ

α/β

(E[Dβ
])αr/β < αδ/2.
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Let

R =


i∈T

QiΠi,

and note that for any t > 0,

P(R > t) = P(R+ > t) = P


i∈T

QiΠi

+

> t


= P


i∈T

dr Q+

i Πi > dr t



≥ P


i∈T

r
j=1

D(i, j)Q+

i Πi > dr t


= P


i∈T

Q+

i Πi > dr t


= P(R > dr t).

We now apply the first part of this theorem to the new random variable R to obtain

P(R > v) ∼

E


(Q+)α ∨

N
i=1

(Ci R+

i )α −

N
i=1

(Ci R+

i )α


αE


N

i=1
Cα

i log Ci

 · v−α

as v → ∞. The positivity of H will then follow once we show

E , E


(Q+)α ∨

N
i=1

(Ci R+

i )α −

N
i=1

(Ci R+

i )α


> 0.

We start by writing E as

E = E

(Q+)α −

N
i=1

(Ci R+

i )α

+
− E


N

i=1

(Ci R+

i )α −

N
i=1

(Ci R+

i )α


, E1 − E2.

To analyze E1 note that

E1 ≥ E

(Q+)α1(Q+
≤ q) −

N
i=1

(Ci R+

i )α

+

1


N

i=1

(Ci R+

i )α ≤ δ/6


≥ E


(Q+)α1(Q+

≤ q) − δ/6
+

− E


(Q+)α1(Q+

≤ q) − δ/6
+ 1


N

i=1

(Ci R+

i )α > δ/6



≥ E

(Q+)α1(Q+

≤ q)

−

δ

6
− qα E


r

j=1

Dα
j


1


N

i=1

(Ci R+

i )α > δ/6



= E

(Q+)α


− E


(Q+)α1(Q+ > q)


−

δ

6
− qα P


N

i=1

(Ci R+

i )α > δ/6


,
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where in the last equality we used the observation that (Q+)α = (Q+)α
r

j=1 Dα
j , wherer

j=1 Dα
j is independent of T , and E

r
j=1 Dα

j


= 1. It follows that

E1 ≥ E[(Q+)α] −
δ

3
− qα P


N

i=1

(Ci R+

i )β > (δ/6)β/α



≥ E[(Q+)α] −
δ

3
−

qα

(δ/6)β/α
E


N

i=1

(Ci R+

i )β


(by Markov’s inequality)

= E[(Q+)α] −
δ

3
−

qαρβ

(δ/6)β/α
E

(R+)β


.

By the same arguments used in the proof of Lemma 3.1,

E[(R+)β ] ≤ E


∞

k=0


i∈Ak

(Q+

i )βΠ β

i


=

E

(Q+)β


1 − ρβ

=


E[Dβ

]
r

E[(Q+)β ]

1 − ρβ

. (12)

Our choice of r now guarantees that

E1 ≥ E[(Q+)α] −
δ

3
−

qα E[(Q+)β ]

(δ/6)(1 − ρβ)
(E[Dβ

])r > E[(Q+)α] −
δ

2
.

It remains to bound E2. Follow the same steps as in the proof of Lemma 4.6 in [13] to obtain

αE2 =


∞

0
E


N

i=1

1(Ci R+

i > t) − 1


N

i=1

Ci R+

i > t


tα−1dt

≤ E

β−1


E[(R+)β ]

N
i=1

Cβ
i

α/β 
∞

0


e−u

− 1 + u


u−α/β−1du


≤ K E

 N
i=1

Cβ
i

α/β
E[Dβ

]
r

E[(Q+)β ]

1 − ρβ

α/β

(by (12)).

Our choice of r now gives E2 < δ/2. We conclude that

E > E[(Q+)α] − δ > 0. �

4. The linear recursion

In this section of the paper we explain how Theorem 3.4, which establishes the power-law
behavior of the endogenous solution R to the maximum equation (6), can be used to show that
the constant HL given by Theorem 4.6 in [14] is strictly positive.

Consider the linear equation

RL
D
=

N
i=1

Ci RL ,i + Q, (13)

where (Q, N , C1, C2, . . .) is a real-valued random vector with N ∈ N ∪ {∞} and P(|Q| > 0) >

0, and {RL ,i }i∈N is a sequence of i.i.d. random variables independent of (Q, N , C1, C2, . . .)
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having the same distribution as RL . The results in this section refer to the endogenous solution
given by

RL =

∞
k=0


i∈Ak

Πi Qi. (14)

We refer the reader to Section 4 in [14] for detailed conditions under which RL is well defined
and how it solves (13). We point out that all our results for the maximum recursion assume that
the weights {Ci } are nonnegative, so the connection between RL and R is much more difficult to
make in this case.

As mentioned in the introduction, the idea behind our proof lies in first considering what we
call a “symmetric tree”, and using a novel argument to show that the corresponding endogenous
solution to the linear recursion on this symmetric tree follows a power-law asymptotic behavior
with a strictly positive constant of proportionality. The second step is to construct a symmetric
tree using two coupled versions of a general (non-symmetric) tree and show how the solution to
the general case is lower bounded by the symmetric solution. The first of these two steps is given
in the following proposition.

Proposition 4.1. Let (Q, N , C1, C2, . . .) be a random vector with N ∈ N ∪ {∞} and P(|Q| >

0) > 0, and RL be the solution to (13) given by (14). Assume that for some 0 < β ≤ 1, E[|Q|
β
]

< ∞ and E
N

j=1 |C j |
β


< 1. In addition, suppose that

(Q, N , C1, C2, . . .)
D
= (−Q, N , C1, C2, . . .). (15)

Then,

P(|RL | > t) ≥
1
2

P


max
i∈T

|Πi Qi| > t


.

Remarks 4.2. (a) We call a weighted branching tree whose root vector satisfies (15) a symmetric
tree. We will show how one can easily construct such trees in the proof of Corollary 4.4. (b) That
the solution RL for symmetric trees follows a power-law behavior with strictly positive constant
of proportionality if and only if Q ≢ 0 immediately follows from the preceding proposition and
Theorem 3.4 applied to the weighted branching tree having root vector (|Q|, N , |C1|, |C2|, . . .).
(c) The proof of Proposition 4.1 follows the ideas of the Lévy-type maximal inequalities from [8]
(see Theorem 1.1.1) adapted to weighted branching trees.

Proof of Proposition 4.1. We start by defining the process

W0 = Q, Wk =


i∈Ak

Πi Qi, k ∈ N,

and with some abuse of notation, the process

V0 = |Q|, Vk =


i∈Ak

|Πi Qi|, k ∈ N.

Next, consider the events

B0 = {V0 > t}, Bk =


max

0≤i≤k−1
Vi ≤ t, Vk > t


, k ∈ N,
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and note that they are disjoint and satisfy

P


max
k≥0

Vk > t


=

∞
k=0

P(Bk) =

∞
k=0

(P (Bk, |RL | > t) + P (Bk, |RL | ≤ t)) . (16)

To analyze the second probability on the right hand side, for each k = 1, 2, 3, . . . , let mk : N →

Nk be a bijective function, and use it to define the events Bk,1 = Bk ∩

|Πmk (1)Qmk (1)| > t


and

Bk, j = Bk ∩


max

1≤r≤ j−1
|Πmk (r)Qmk (r)| ≤ t, |Πmk ( j)Qmk ( j)| > t


, j = 2, 3, 4, . . . ,

where the convention is to set Πmk (r) ≡ 0 if mk(r) ∉ Ak . Note that the {Bk, j } are disjoint and
P(Bk) =


∞

j=1 P(Bk, j ). The key observation is that under the symmetry assumptions of the
lemma we have that for any k ≥ 0, and r ∈ N the sequences

{(Qi, Ni, C(i,1), C(i,2), . . .) : i ∈ T } and

{(Qi, Ni, C(i,1), C(i,2), . . .) : i ∈ T , i ≠ mk(r)}

∪{(−Qmk (r), Nmk (r), C(mk (r),1), C(mk (r),2), . . .)}

have the same distribution. It follows that for any k ≥ 0 and r ∈ N,

RL =


j≠k

W j +


i∈Ak ,i≠mk (r)

Πi Qi + Πmk (r)Qmk (r)

D
=


j≠k

W j +


i∈Ak ,i≠mk (r)

Πi Qi − Πmk (r)Qmk (r)

= RL − 2Πmk (r)Qmk (r),

and since the events {Bk, j } are insensitive to changes in the sign of the {Qi}, we have that for any
k ≥ 0,

P (Bk, |RL | ≤ t) =

∞
r=1

P

Bk,r , |RL | ≤ t


=

∞
r=1

P

Bk,r ,

2Πmk (r)Qmk (r) − RL
 ≤ t


≤

∞
r=1

P

Bk,r , 2

Πmk (r)Qmk (r)

− |RL | ≤ t


=

∞
r=1

P

Bk,r , |RL | ≥ 2

Πmk (r)Qmk (r)

− t


≤

∞
r=1

P

Bk,r , |RL | > t


(since

Πmk (r)Qmk (r)

 > t on Bk,r )

= P (Bk, |RL | > t) .

This and Eq. (16) complete the proof. �

We now proceed to the second step of our proof, the one that shows how to lower bound
the endogenous solution RL in the general case with the solution to the linear equation (13) on
a closely related symmetric tree. The following technical lemma will be useful to explain our
construction.
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Lemma 4.3. Let X be a real-valued random variable and let Y = (Y1, Y2, . . .) ∈ R∞ be a
random vector on the same probability space. Define for x ∈ R,

FY(x) = E [1(X ≤ x)|Y] .

Then, FY(x) is nondecreasing in x a.s. and F−1
Y (t) = inf{x ∈ R : FY(x) ≥ t} exists a.s.

Moreover, if U1, U2 are two independent Uniform (0, 1) random variables, independent of Y,
then

X1 = F−1
Y (U1) and X2 = F−1

Y (U2)

are identically distributed and conditionally independent given Y, and

(X i , Y1, Y2, . . .)
D
= (X, Y1, Y2, . . .), i = 1, 2.

Proof. That FY(x) is nondecreasing in x a.s. follows from the fact that 1(X ≤ x) is nondecreas-
ing. Moreover, the pseudo inverse F−1

Y (t) is well defined for all t ∈ R and satisfies F−1
Y (t) ≤ x

if and only if t ≤ FY(x) for all t, x . Now consider the two random variables X1 and X2 from the
statement of the lemma. Then, for any x1, x2 ∈ R,

E [1(X1 ≤ x1, X2 ≤ x2)| Y]

= E


1(F−1
Y (U1) ≤ x1)1(F−1

Y (U2) ≤ x2)

Y


= E


1(F−1
Y (U1) ≤ x1)

Y


E


1(F−1
Y (U2) ≤ x2)

Y


(since U1, U2 and Y are independent)

= E [1(X1 ≤ x1)| Y] E [1(X2 ≤ x2)| Y] ,

which shows the conditional independence given Y. Furthermore, for any x ∈ R,

E [1(X i ≤ x)| Y] = E


1(F−1
Y (Ui ) ≤ x)

Y


= E [1(Ui ≤ FY(x))| Y] = FY(x) = E [1(X ≤ x)| Y]

for i = 1, 2. Hence, X1 and X2 have the same conditional distribution as X |Y, from where it
follows that for any measurable A ⊆ R∞ and i = 1, 2,

P ((X i , Y1, Y2, . . .) ∈ A) = E [E [1((X i , Y1, Y2, . . .) ∈ A)| Y]]

= E [E [1((X, Y1, Y2, . . .) ∈ A)| Y]]

= P ((X, Y1, Y2, . . .) ∈ A) . �

We now derive as a corollary the strict positivity of the constant in Theorem 4.6 of [14] for
the general case. Note that the result holds under no additional assumptions beyond those re-

quired in that theorem, in other words, we only require E
N

i=1 |Ci |

α
< ∞ when α > 1

and E

N
i=1 |Ci |

α/(1+ϵ)
1+ϵ


< ∞ for some ϵ > 0 (which does not imply ρα+ϵ < ∞) when

0 < α ≤ 1; compare these to conditions (C) and (A) in [2], respectively. We also point out that
Theorem 4.6 of [14] does not require the existence of the first root 0 < υ < α of the equation

E
N

i=1 |Ci |
υ


= 1, but only the derivative condition 0 < E
N

i=1 |Ci |
α log |Ci |


< ∞. Fi-

nally, our main result on the asymptotic behavior of the minimal/endogenous solution R to the
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maximum equation (Theorem 3.4) gives that HL > 0 provided Q is not a deterministic function
of the weights {Ci } and assuming all the other conditions in Theorem 4.6 of [14] are satisfied.
We have included the entire statement of the theorem for completeness.

Corollary 4.4. Let (Q, N , C1, C2, . . .) be a random vector, with N ∈ N ∪ {∞}, {Ci }i∈N real-
valued weights, Q a real-valued random variable with P(|Q| > 0) > 0 and R be the solution
to (13) given by (14). Suppose that there exists j ≥ 1 with P(N ≥ j, |C j | > 0) > 0 such that the
measure P(log |C j | ∈ du, |C j | > 0, N ≥ j) is non lattice, and that for some α > 0, E[|Q|

α
] <

∞, E
N

i=1 |Ci |
α log |Ci |


> 0 and E

N
i=1 |Ci |

α


= 1. In addition, assume

1. E
N

i=1 |Ci |


< 1 and E

N
i=1 |Ci |

α
< ∞, if α > 1; or,

2. E

N
i=1 |Ci |

α/(1+ϵ)
1+ϵ


< ∞ for some 0 < ϵ < 1, if 0 < α ≤ 1.

Then, provided Q is not a deterministic function of (N , C1, C2, . . .), we have

P(|R| > t) ∼ HL t−α, t → ∞,

where 0 < HL < ∞ and

HL =

E

 N
i=1

Ci Ri + Q

α −

N
i=1

|Ci Ri |
α



αE


N

i=1
|Ci |

α log |Ci |

 .

Remark 4.5. Note that the same arguments used in the proof of Proposition 4.1 work, for any
choice of Q ≢ 0, if the weights {Ci } are symmetric, in which case the strict positivity of HL
holds without any assumptions on Q.

Proof. Let {(Qi, Ni, C(i,1), C(i,2), . . .)}i∈U be a sequence of i.i.d. vectors and construct its
corresponding random variable

R =

∞
k=0


i∈Ak

Πi Qi.

Now use this sequence and Lemma 4.3 to construct a second i.i.d. sequence {(Q̂i, Ni, C(i,1),

C(i,2), . . .)}i∈U where

(Q̂, N , C1, C2, . . .)
D
= (−Q, N , C1, C2, . . .)

and such that Q̂i and Qi are conditionally independent given (Ni, C(i,1), C(i,2), . . .) for all i ∈ U .
Denote by R̂ the corresponding process

R̂ =

∞
k=0


i∈Ak

Πi Q̂i,

and note that |R|
D
= |R̂|. Next define

R =
R + R̂

2
=

∞
k=0


i∈Ak

Πi


Qi + Q̂i

2


,

∞
k=0


i∈Ak

Πi Qi,
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and observe that R satisfies the conditions of Proposition 4.1, and therefore

P(|R| > t) ≥
1
2

P


max
i∈T

|Πi Qi| > t


.

Note that the assumption that Q is not a deterministic function of (N , C1, C2, . . .) implies that
Q ≢ 0. Moreover, by Theorem 3.4,

P


max
i∈T

|Πi Qi| > t


∼ Ht−α

as t → ∞ for some constant 0 < H < ∞. The last step is to note that

P(|R| > t) ≤ P

|R| + |R̂| > 2t


≤ P(|R| > t) + P(|R̂| > t) = 2P(|R| > t). �
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