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ABSTRACT: This paper studies the distribution of a family of rankings, which includes Google’s
PageRank, on a directed configuration model. In particular, it is shown that the distribution of the
rank of a randomly chosen node in the graph converges in distribution to a finite random variable R∗

that can be written as a linear combination of i.i.d. copies of the attracting endogenous solution to a
stochastic fixed-point equation of the form

R D=
N∑
i=1

CiRi + Q,

where (Q, N , {Ci}) is a real-valued vector with N ∈ {0, 1, 2, . . . }, P(|Q| > 0) > 0, and the {Ri}
are i.i.d. copies of R, independent of (Q, N , {Ci}). Moreover, we provide precise asymptotics for the
limit R∗, which when the in-degree distribution in the directed configuration model has a power law
imply a power law distribution for R∗ with the same exponent. © 2016 Wiley Periodicals, Inc. Random
Struct. Alg., 51, 237–274, 2017
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1. INTRODUCTION

Ranking nodes according to their centrality, or importance, in a complex network such as
the Internet, the World Wide Web, and other social and biological networks, has been a
hot research topic for several years in physics, mathematics, and computer science. For a
comprehensive overview of the vast literature on rankings in networks we refer the reader
to [49], and more recently to [17] for a thorough up-to-date mathematical classification of
centrality measures.

In this paper we analyze a family of ranking algorithms which includes Google’s PageR-
ank, the algorithm proposed by Brin and Page [22], and which is arguably the most influential
technique for computing rankings of nodes in large directed networks.

1.1. Google’s PageRank

The original definition of PageRank is the following. Let Gn = (Vn, En) be a directed graph,
with a set of (numbered) vertices Vn = {1, . . . , n}, and a set of directed edges En. Choose
a constant c ∈ (0, 1), which is called a damping factor, and let q = (q1, q2, . . . , qn) be
a personalization probability vector, i.e., qi ≥ 0 and

∑n
i=1 qi = 1. Denote by di = |{j :

(i, j) ∈ En}| the out-degree of node i ∈ Vn. Then, the PageRank vector r = (r1, . . . , rn) is
the unique solution to the following system of linear equations:

ri =
∑

j:(j,i)∈En

c

dj
rj + (1 − c)qi, i = 1, . . . , n. (1.1)

Google’s PageRank was designed to rank Web pages based on the network’s structure,
rather than their content. The idea behind (1.1) is that a page is important if many important
pages have a hyperlink to it. The original paper [22] uses c = 0.85, but a complete range
of values of c ∈ (0, 1) has been considered in the literature, and the influence of c on the
PageRank values has been analyzed in [11, 15, 21, 49]. The classical version of PageRank
has qi = 1/n for all i. By tuning the personalization values, qi’s, one can, for instance,
give preference to specific topics [38] or penalize spam pages [37]. Numerous applications
of PageRank and its modifications include graph clustering [9], spam detection [37], and
citation analysis [28, 71].

The solution of (1.1) can be written in a matrix-vector form as:

r = (1 − c)q[I − cP]−1, (1.2)

where A is the adjacency matrix of the graph and P = diag(d1, . . . , dn)
−1 · A. Note that

the ith row of P sums up to one if di > 0, and it consists of zeros if di = 0. Nodes with
no outbound links are called dangling nodes. In the context of web search these could be
documents or pdf-files, see Section 8.4 of [49] for more details on dangling nodes and their
influence on PageRank. In the special case when P is stochastic (no dangling nodes), we
have

∑
i ri = 1, so r can be seen as the stationary distribution of a discrete-time Markov

chain with transition matrix c · P + (1 − c)qT 1, where 1 is the row vector of ones in R
n.

If dangling nodes are present, then
∑

i ri < 1. It is common in the PageRank literature to
replace each zero-row of matrix P by vector q. In this case the Markov chain interpretation
still applies, namely, after visiting a dangling node, the next node is sampled from the
distribution q. It is easy to see, and is well-known, that the stationary distribution of this
Markov chain is r/||r||1. In this paper we refer to the non-normalized vector r as PageRank.
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It follows directly from (1.1) or (1.2) that 1 ≥ ||r||1 ≥ (1−c)
∑

i qi = 1−c. In particular,
the average PageRank, which equals ||r||1/n, is between (1 − c)/n and 1/n. Since for very
large graphs 1/n may be too small, it is more convenient for our purposes to work with the
scaled version of PageRank:

nr =: R = (R1, R2, . . . , Rn).

Then, also using the notation Cj for c/dj, and the notation Qi for n(1 − c)qi, we rewrite
(1.1) as

Ri =
∑

j:(j,i)∈En

Cj Rj + Qi, i = 1, . . . , n. (1.3)

Throughout the paper, we will refer to R as the PageRank vector and to Q =
(Q1, Q2, . . . , Qn) as the personalization vector.

The basic definition (1.1) has many modifications and generalizations. The analysis in
this paper will cover a wide range of them by allowing a broad form of the coefficients
Cj’s in (1.3). For example, our model admits a random damping factor as studied in [30].
Throughout the paper we refer to (1.3) with general Cj’s as generalized PageRank.

1.2. The Power Law Behavior of PageRank

In real-world networks, it is often found that the fraction of nodes with (in- or out-) degree k
is ≈ c0k−α−1, usually α ∈ (1, 3), see e.g., [22,54]. Thus, a lot of research has been devoted to
the study of random graph models with highly skewed, or scale-free, degree distributions.
By now, classical examples are the Chung-Lu model [29], the Preferential Attachment
model [19], and the Configuration Model [64, Chapter 7]. New models continue to appear,
tuned to the properties of specific networks. For example, an interesting “super-star” model
was recently developed to describe retweet graphs in [13]. We refer to [33, 54, 64] for a
more detailed discussion of random graph models for complex networks. In this paper we
focus on the Directed Configuration Model as studied in [25]. Originally, an (undirected)
Configuration Model is defined as a graph, randomly sampled from the set of graphs with
a given degree sequence [18]. We emphasize that, to the best of our knowledge, [25] is
the only paper that formally addresses the directed version of the Configuration Model and
obtains its exact mathematical properties. We will provide more details in Section 3.

From the work in [58], and many papers that followed, the following hypothesis has
always been confirmed by the data.

The power law hypothesis: If the in-degree distribution in a network follows a power
law, then the PageRank scores in this network will also follow a power law with the same
exponent.

The power law hypothesis is plausible because in (1.1) the number of terms in the
summation on the right-hand side is just the in-degree of i, so the in-degree provides a
‘mean-field’ approximation for PageRank [35]. However, this argument is not exact nor
accurate enough, which is confirmed by the fact that the top-ranked nodes in PageRank
are not exactly those with the largest in-degrees [28, 66, 70]. Exact mathematical evidence
supporting the power law hypothesis is surprisingly scarce. As one of the few examples, [10]
obtains the power law behavior of average PageRank scores in a preferential attachment
graph by using Polya’s urn scheme and advanced numerical methods.
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An analytical explanation for the power law behavior of PageRank was suggested in a
series of papers [50, 68, 69] by comparing the PageRank of a randomly chosen node to the
endogenous solution of a stochastic fixed-point equation (SFPE) that mimics (1.3):

R
D=

N∑
i=1

CiRi + Q. (1.4)

Here N (in-degree) is a nonnegative integer-valued random variable having a power law
distribution with exponent α, Q (personalization value) is an arbitrary positive random
variable, and the Ci’s are random coefficients that in [68] equal c/Di, with Di being the

size-biased out-degree. The symbol
D= denotes equality in distribution. Assuming that N is

regularly varying and using Laplace transforms, it was proved in [68] that R has a power
law distribution with the same exponent as the distribution of N if N has a heavier tail than
Q, whereas the tail distribution of R is determined by that of Q if Q is heavier than N . The
same result was also proved independently in [43], under slightly different conditions, using
a sample-path approach.

However, the SFPE does not fully explain the behavior of PageRank in networks since
it implicitly assumes that the underlying graph is an infinite tree, a condition that is never
true in real-world networks. In this work we complete the argument when the underlying
network is a Directed Configuration Model by showing that the distribution of the PageRank
in the graph converges to the attracting endogenous solution of a SFPE. To the best of our
knowledge, this is the first rigorous proof of the “power law hypothesis” on a complex
network. Furthermore, our methodology is likely to be useful in the analysis of generalized
PageRank and other processes on a wide class of locally tree-like graphs.

In Section 2 we describe our main results, outline the methodology, and give an overview
of the rest of the paper. Before doing that, we end the introduction with a brief literature
review on branching SFPEs.

1.3. Stochastic Fixed-Point Equations (SFPEs)

Linear and other max-plus branching SFPEs appear in a wide range of settings, including
the analysis of divide and conquer algorithms [34, 59], queueing theory [6, 7, 47, 57], and
statistical physics [12, 23]. Equation (1.4) is known as the smoothing transform. The clas-
sification of their multiple solutions, calculation of their moments, and description of their
asymptotic behavior, have been extensively studied in the literature, and are related to the
broader study of weighted branching processes (WBPs) [60–62]. For the smoothing trans-
form in particular, we mention the work in [1,2,4,5,24,32,39,43–45,72] for the univariate
case, and [8,23,41,51,52] for multivariate generalizations. The non-branching linear SFPE,
i.e., N ≡ 1 in (1.4), is known as the random difference equation, and its analysis is even
older, with some of the classical results being those found in [20, 36, 48].

The tail behavior of the attracting endogenous solution to (1.4), the one relevant to
PageRank, was given in [43–45, 56]. In particular, it was established that it can have
a power-law tail under several types of conditions, including those described earlier,
but also when there exists a root α > 0 to the equation E

[∑N
i=1 |Ci|α

] = 1 with
0 < E

[∑N
i=1 |Ci|α log |Ci|

]
< ∞, which can only occur when the Ci’s are not bounded

by one. The main tools for the analysis of the heavy-tailed behavior of this special solution
are large deviations and the implicit renewal theory on trees developed in [44, 45]. More
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recent results describing its light-tailed behavior are given in [3,42]. Our focus in this paper
is only on the attracting endogenous solution to the (univariate) smoothing transform with
weights bounded by one.

2. OVERVIEW OF THE PAPER

Although a rigorous presentation of the main result in the paper requires a significant amount
of notation, we provide here a somewhat imprecise version that still captures the essence
of our work. The paper is written according to the different steps needed in the proof of the
main result, outlined in Section 2.2, and whose precise statement is found in Section 6.2.

2.1. An Overview of the Main Result

LetGn = (Vn, En)be a directed graph. We number the nodes Vn = {1, 2, . . . , n} in an arbitrary
fashion and let R1 =: R(n)

1 denote the generalized PageRank of node 1, as defined by (1.3).
The in-degree of node 1 is then a random variable N1 picked uniformly at random from the
in-degrees of all n nodes in the graph (i.e., from the empirical distribution). Next, we use the
notation Ni+1 to denote the in-degree of the ith inbound neighbor of node 1 (i.e., (i +1, 1) ∈
En), and note that although the {Ni}i≥2 have the same distribution, it is not necessarily the
same of N1 since their corresponding nodes implicitly have one or more out-degrees. More
precisely, the distribution of the {Ni}i≥2 is an empirical size-biased distribution where nodes
with high out-degrees are more likely to be chosen. The two distributions can be significantly
different when the number of dangling nodes (nodes with zero out-degrees) is a positive frac-
tion of n and their in-degree distribution is different than that of nodes with one or more out-
degrees. Similarly, let Q1 and {Qi}i≥2 denote the personalization values of node 1 and of its
neighbors, respectively, and let {Ci}i≥2 denote the coefficients, or weights, of the neighbors.

As already mentioned, we will assume throughout the paper that Gn is constructed accord-
ing to the Directed Configuration Model (DCM). To briefly explain the construction of the
DCM consider a bi-degree sequence (Nn, Dn) = {(Ni, Di) : 1 ≤ i ≤ n} of nonnegative
integers satisfying

∑n
i=1 Ni = ∑n

i=1 Di. To draw the graph think of each node, say node i,
as having Ni inbound and Di outbound half-edges or stubs, then pair each of its inbound
stubs with a randomly chosen outbound stub from the set of unpaired outbound stubs (see
Section 3 for more details). The resulting graph is in general what is called a multigraph,
i.e., it can have self-loops and multiple edges in the same direction.

Our main result requires us to make some assumptions on the bi-degree sequence used to
construct the DCM, as well as on the coefficients {Ci} and the personalization values {Qi},
which we will refer to as the extended bi-degree sequence. The first set of assumptions (see
Assumption 5.1) requires the convergence of various limits that can be translated into the
existence of moments for the degrees and covariances between the degrees and the weights;
in particular, they imply that the in-degrees have finite mean and the out-degrees have finite
variance, which guarantees the local tree-like structure of the inbound components of nodes
in the graph. The second set of assumptions (see Assumption 6.2) requires the convergence
of certain empirical distributions, derived from the extended bi-degree sequence, to proper
limits as the graph size goes to infinity. This type of weak convergence assumption is
typical in the analysis of random graphs [64], and is there to ensure the existence of a
limiting distribution (independent of the size of the graph) for the ranks. We point out
that the two sets of assumptions mentioned above are rather weak, and can be satisfied by
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extended bi-degree sequences constructed in many different ways. In Section 7 we provide
one algorithm that generates an extended bi-degree sequence satisfying both assumptions
from a set of prescribed distributions.

To state our main result let (N0, Q0) and (N , Q, C) denote the weak limits of the joint ran-
dom distributions of (N1, Q1) and (N2, Q2, C2), respectively, as defined in Assumption 6.2.
Let R denote the attracting endogenous solution to the following SFPE:

R D=
N∑
j=1

CjRj + Q, (2.1)

where {Ri} are i.i.d. copies of R, independent of (N , Q, {Ci}), and with {Ci} i.i.d. and
independent of (N , Q). Our main result establishes that under the assumptions mentioned
above, we have that

R(n)

1 ⇒ R∗, n → ∞,

where ⇒ denotes weak convergence and R∗ is given by

R∗ :=
N0∑
j=1

CjRj + Q0, (2.2)

where the {Ri} are again i.i.d. copies of R, independent of (N0, Q0, {Ci}), and with {Ci} inde-
pendent of (N0, Q0). Thus, R(n)

1 is well approximated by a linear combination of attracting
endogenous solutions of a SFPE. Here R∗ represents the generalized PageRank of node 1,
and the Ri’s represent the PageRank of its inbound neighbors. We give more details on the
explicit construction of R and comment on why it is called the “attracting endogenous”
solution in Section 6. Furthermore, since R has been thoroughly studied in the weighted
branching processes literature, we can describe the asymptotic behavior of generalized
PageRank in a large class of DCM graphs, which is useful for understanding the impact that
the degree distributions, the weights, and the personalization values have on the ranking
results. In particular, our results provide a rigorous proof of the “power-law hypothesis” for
the scale-free DCM.

2.2. Methodology

As mentioned earlier, the proof of our main result is given in several steps, each of them
requiring a very different type of analysis. For the convenience of the reader, we include in
this section a map of these steps.

We start in Section 3 by describing the DCM, which on its own does not require any
assumptions on the bi-degree sequence. Then, in Section 4 we define a class of ranking algo-
rithms, of which PageRank and its various modifications are special cases. These algorithms
produce a vector R(n) that is a solution to a linear system of equations, where the coefficients
are the weights {Ci} assigned to the nodes. For example, in the classical PageRank scenario,
we have Ci = c/Di, if Di �= 0.

The proof of the main result consists of the following three steps:

a.) Finite approximation (Section 4.2): Show that the class of rankings that we study can
be approximated in the DCM with any given accuracy by a finite (independent of the
graph size n) number of matrix iterations. The DCM plays a crucial role in this step
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since it implies that the ranks of all the nodes in the graph have the same distribution.
A uniform bound on the sequence {CiDi} is required to provide a suitable rate of
convergence.

b.) Coupling with a tree (Section 5): Construct a coupling of the DCM graph and a
“thorny branching tree” (TBT). In a TBT each node, with the exception of the root,
has one outbound link to its parent and possibly several other unpaired outbound links.
During the construction, all nodes in both the graph and the tree are also assigned a
weight Ci. The main result in this section is the Coupling Lemma 5.4, which states
that the coupling between the graph and the tree will hold for a number of generations
in the tree that is logarithmic in n. The locally tree-like property of the DCM and our
first set of assumptions (Assumption 5.1) on the bi-degree sequence are important for
this step.

c.) Convergence to a weighted branching process (Section 6): Show that the rank of the
root node of the TBT converges weakly to (2.2). This last step requires the weak
convergence of the random distributions that define the TBT in the previous step
(Assumption 6.2).

Section 7 gives an algorithm to construct an extended bi-degree sequence satisfying
the two main assumptions, and Section 8 contains some numerical examples, including a
comparison of the SFPE approximation and the true PageRank on a real-world network.
The technical proofs are postponed until Section 9.

3. THE DIRECTED CONFIGURATION MODEL

The Configuration Model (CM) was originally defined as an undirected graph sampled
uniformly at random from the collection of graphs with a given degree sequence [18]. To
construct the graph, each node receives a number of half-edges, or stubs, according to the
degree sequence, which are then paired uniformly at random to form edges. The resulting
graph is, in general, a multi-graph, since two stubs of the same node may form an edge (self-
loop), or a node may have two or more stubs connected to the same other node (multiple
edges). There are two standard ways to create a simple graph using this pairing process: the
repeated CM and the erased CM. In the repeated CM, the pairing is redone until a simple
graph is obtained; this will occur with positive probability if the degrees have finite variance,
see [64, Section 7.6]. In the erased CM self-loops and double-edges are removed. In the
erased CM, the degree sequence is altered because of edge removal, but the distribution of
the original degree sequence is preserved asymptotically under very general conditions, see
again [64, Section 7.6]. A literature review and discussion of the undirected CM is provided
in [64, Section 7.9].

While the undirected CM has been thoroughly studied, a formal analysis of the Directed
Configuration Model (DCM) with given in- and out-degree distributions has only been
recently done in [25]. The crucial difference compared to the undirected case is that in
the latter one can generate a degree sequence from a prescribed distribution by sampling
i.i.d. random variables and simply adding one to the last one if the sum is odd, see [64,
Section 7.6]. However, in the directed case, this method does not work because, in general,
the probability of sampling two i.i.d. sequences whose sums are equal converges to zero as
n → ∞. To circumvent this problem, the algorithm given in [25], and included in Section 7
in this paper, forces the sums to match by adding the necessary half-edges in such a way
that the given degree distributions are essentially unchanged.
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In order to analyze the distribution of ranking scores on the DCM we also need other node
attributes besides the in- and out-degrees, such as the coefficients and the personalization
values. With this in mind we give the following definition.

Definition 3.1. We say that the sequence (Nn, Dn, Cn, Qn) = {(Ni, Di, Ci, Qi) : 1 ≤
i ≤ n} is an extended bi-degree sequence if for all 1 ≤ i ≤ n it satisfies Ni, Di ∈ N =
{0, 1, 2, 3, . . . }, Qi, Ci ∈ R, and is such that

Ln :=
n∑

i=1

Ni =
n∑

i=1

Di.

In this case, we call (Nn, Dn) a bi-degree sequence.

Formally, the DCM can be defined as follows.

Definition 3.2. Let (Nn, Dn) be a bi-degree sequence and let Vn = {1, 2, . . . , n} denote
the nodes in the graph. To each node i assign Ni inbound half-edges and Di outbound
half-edges. Enumerate all Ln inbound half-edges, respectively outbound half-edges, with
the numbers {1, 2, . . . , Ln}, and let xn = (x1, x2, . . . , xLn) be a random permutation of these
Ln numbers, chosen uniformly at random from the possible Ln! permutations. The DCM
with bi-degree sequence (Nn, Dn) is the directed graph Gn = (Vn, En) obtained by pairing
the xith outbound half-edge with the ith inbound half-edge.

We point out that instead of generating the permutation xn of the outbound half-edges
up front, one could alternatively construct the graph in a breadth-first fashion, by pairing
each of the inbound half-edges, one at a time, with an outbound half-edge, randomly chosen
with equal probability from the set of unpaired outbound half-edges. In Section 5 we will
follow this approach while simultaneously constructing a coupled TBT.

We emphasize that the DCM is, in general, a multi-graph. It was shown in [25] that
the random pairing of inbound and outbound half-edges results in a simple graph with
positive probability provided both the in-degree and out-degree distributions possess a
finite variance. In this case, one can obtain a simple realization after finitely many attempts,
a method we refer to as the repeated DCM, and this realization will be chosen uniformly
at random from all simple directed graphs with the given bi-degree sequence. Furthermore,
if the self-loops and multiple edges in the same direction are simply removed, a model we
refer to as the erased DCM, the degree distributions will remain asymptotically unchanged.

For the purposes of this paper, self-loops and multiple edges in the same direction do not
affect the main convergence result for the ranking scores, and therefore we do not require the
DCM to result in a simple graph. A similar observation was made in [65] when analyzing
distances in the undirected CM.

Throughout the paper, we will use Fn = σ((Nn, Dn, Cn, Qn)) to denote the sigma-algebra
generated by the extended bi-degree sequence, which does not include information about the
random pairing. To simplify the notation, we will use Pn(·) = P(·|Fn) and En[·] = E[·|Fn]
to denote the conditional probability and conditional expectation, respectively, given Fn.

4. SPECTRAL RANKING ALGORITHMS

In this section we introduce the class of ranking algorithms that we analyze in this paper.
Following the terminology from [17], these algorithms belong to the class of spectral
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centrality measures, which ‘compute the left dominant eigenvector of some matrix derived
from the graph’. We point out that the construction of the matrix of weights and the definition
of the rank vector that we give in Section 4.1 is not particular to the DCM.

4.1. Definition of the Rank Vector

The general class of spectral ranking algorithms we consider are determined by a matrix
of weights M = M(n) ∈ R

n×n and a personalization vector Q ∈ R
n. More precisely, given

a directed graph with (Nn, Dn, Cn, Qn) as its extended bi-degree sequence, we define the
(i, j)th component of matrix M as follows:

Mij =
{

sijCi, if there are sij edges from i to j,

0, otherwise.
(4.1)

The rank vector R = (R1, . . . , Rn) is then defined to be the solution to the system of
equations

R = RM + Q. (4.2)

Remark 4.1. In the case of the original PageRank algorithm, Ci = c/Di, Qi = 1 − c for
all i, and the constant 0 < c < 1 is the so-called damping factor.

4.2. Finitely Many Iterations

To solve the system of equations given in (4.2) we proceed via matrix iterations [49]. To
initialize the process let 1 be the (row) vector of ones in R

n and let r0 = r01, with r0 ∈ R.
Define

R(n,0) = r0,

and for k ≥ 1,

R(n,k) = r0Mk +
k−1∑
i=0

QMi.

With this notation, we have that the solution R to (4.2), provided it exists, can be written as

R = R(n,∞) =
∞∑

i=0

QMi.

We are interested in analyzing a randomly chosen coordinate of the vector R(n,∞). The
first step, as described in Section 2.2, is to show that we can do so by using only finitely
many matrix iterations. To this end note that

R(n,k) − R(n,∞) = r0Mk −
∞∑

i=k

QMi =
(

r0 −
∞∑

i=0

QMi

)
Mk .

Moreover, ∥∥R(n,k) − R(n,∞)
∥∥

1
≤ ∥∥r0Mk

∥∥
1
+

∞∑
i=0

∥∥QMk+i
∥∥

1
.
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Since for any row vector y = (y1, y2, . . . , yn) we have ‖yA‖1 ≤ ‖y‖1‖A‖∞, where
‖A‖∞ = max1≤i≤n

∑
j Aij is the matrix infinity norm (see, e.g., [40]), then

‖yMr‖1 ≤ ‖y‖1‖Mr‖∞ ≤ ‖y‖1‖M‖r
∞.

It follows that if we assume that max1≤i≤n |Ci|Di ≤ c for some c ∈ (0, 1), then we have

‖M‖∞ = max
1≤i≤n

|Ci|Di ≤ c,

and we obtain that

∥∥R(n,k) − R(n,∞)
∥∥

1
≤ ||r0||1ck +

∞∑
i=0

||Q||1ck+i = |r0|nck + ||Q||1 ck

1 − c
.

Now note that all the coordinates of the vector R(n,k) −R(n,∞) have the same distribution,
since by construction, the configuration model makes all permutations of the nodes’ labels
equally likely. Hence, the randomly chosen node may as well be the first node, and the error
that we make by considering only finitely many iterations in its approximation is bounded
in expectation by

En

[∣∣∣R(n,k)

1 − R(n,∞)

1

∣∣∣] = 1

n
En

[∥∥R(n,k) − R(n,∞)
∥∥

1

]
≤ |r0|ck + En [||Q||1]

ck

n(1 − c)

=
(

|r0| + 1

n(1 − c)

n∑
i=1

|Qi|
)

ck .

We conclude that if we let

Bn =
{

max
1≤i≤n

|Ci|Di ≤ c,
1

n

n∑
i=1

|Qi| ≤ H

}
(4.3)

for some constants c ∈ (0, 1) and H < ∞, then Markov’s inequality yields

P
(∣∣∣R(n,k)

1 − R(n,∞)

1

∣∣∣ > x−1
n

∣∣∣Bn

)
= 1

P(Bn)
E
[
1(Bn)En

[
1
(∣∣∣R(n,k)

1 − R(n,∞)

1

∣∣∣ > x−1
n

)]]

≤ 1

P(Bn)
E
[
1(Bn)xnEn

[∣∣∣R(n,k)

1 − R(n,∞)

1

∣∣∣]]

≤
(

|r0| + 1

1 − c
E

[
1

n

n∑
i=1

|Qi|
∣∣∣∣∣Bn

])
xnck

≤
(

|r0| + H

1 − c

)
xnck , (4.4)

for any xn ≥ 1. We have thus derived the following result.
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Proposition 4.2. Consider the directed configuration graph generated by the extended
bi-degree sequence (Nn, Dn, Cn, Qn) and let Bn be defined according to (4.3). Then, for any
xn → ∞ and any k ≥ 1, we have

P
(∣∣∣R(n,∞)

1 − R(n,k)

1

∣∣∣ > x−1
n

∣∣∣Bn

)
= O

(
xnck

)
as n → ∞.

This completes the first step of our approach. In the next section we will explain how
to couple the graph, as seen from a randomly chosen node, with an appropriate branching
tree.

5. CONSTRUCTION OF THE GRAPH AND COUPLING WITH A BRANCHING
TREE

The next step in our approach is to approximate the distribution of R(n,k)

1 with the rank of
the root node of a suitably constructed branching tree. To ensure that we can construct such
a tree we require the extended bi-degree sequence to satisfy some further properties with
high probability. These properties are summarized in the following assumption.

Assumption 5.1. Let (Nn, Dn, Cn, Qn) be an extended bi-degree sequence for which there
exists constants H , νi > 0, i = 1, . . . , 5, with

μ := ν2/ν1, λ := ν3/ν1 and ρ := ν5μ/ν1 < 1,

0 < κ ≤ 1, and 0 < c, γ , ε < 1 such that the events


n,1 =
{∣∣∣∣∣

n∑
r=1

Dr − nν1

∣∣∣∣∣ ≤ n1−γ ,

∣∣∣∣∣
n∑

r=1

D2
r − nν3

∣∣∣∣∣ ≤ n1−γ ,

∣∣∣∣∣
n∑

r=1

D2+κ
r − nν4

∣∣∣∣∣ ≤ n1−γ

}
,


n,2 =
{∣∣∣∣∣

n∑
r=1

NrDr − nν2

∣∣∣∣∣ ≤ n1−γ

}
,


n,3 =
{∣∣∣∣∣

n∑
r=1

|Cr|Dr − nν5

∣∣∣∣∣ ≤ n1−γ , max
1≤r≤n

|Cr|Dr ≤ c

}
,


n,4 =
{

n∑
r=1

|Qr| ≤ Hn

}
,

satisfy as n → ∞,

P
(

c

n

) = P

((
4⋂

i=1


n,i

)c)
= O

(
n−ε

)
.

Assumption 5.1 is essentially requiring the existence of the mean, variance and 2 + κ

moment of the out-degrees, and the existence of the covariance between the in- and out-
degrees as well as between the weights and the out-degrees. The specific way in which the
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Fig. 1. Graph construction process. Unpaired outbound links are in gray. [Color figure can be viewed
at wileyonlinelibrary.com]

assumptions are written guarantees a uniform rate of convergence for all the limits. The
maximum condition in 
n,3 and 
n,4 are the ones that allowed us to bound ‖R(n,k) −R(n,∞)‖1

in the previous section, and are there to ensure that Proposition 4.2 holds on the set 
n.
Since the Weak Law of Large Numbers can be used to establish these type of conditions

for a broad class of sequences of random variables, Assumption 5.1 is general enough to be
satisfied by many different constructions of the bi-degree sequence. In Section 7, we give
as an example an algorithm based on sequences of i.i.d. random variables.

In Sections 5.1–5.4 we describe in detail how to construct a coupling of the directed graph
Gn and its approximating weighted branching tree. We start by explaining the terminology
and notation in Section 5.1, followed by the construction itself in Section 5.2. Then, in
Section 5.3 we present the Coupling Lemma 5.4, which is the main result of Section 5.
Finally, Section 5.4 explains how to compute the rank of the root node in the coupled tree.

5.1. Terminology and Notation

Throughout the remainder of the paper we will interchangeably refer to the {Ni} as the in-
degrees/number of offspring/number of inbound stubs, to the {Di} as the out-degrees/number
of outbound links/number of outbound stubs, to the {Ci} as the weights, and to the {Qi} as
the personalization values. We will refer to these four characteristics of a node as the node
attributes.

The fact that we are working with a directed graph combined with the presence of
node attributes, means that we need to use a more general kind of tree in our coupling
than the standard branching process typically used in the random graph literature (e.g.,
[31, 53, 55, 63, 65]). To this end, we will define a process we call a Thorny Branching Tree
(TBT), where each individual (node) in the tree has a directed edge pointing towards its
parent, and also a certain number of unpaired outbound links (pointing, say, to an artificial
node outside the tree). The name ‘thorny’ is due to these unpaired outbound links that look
like thorns on each node, see Fig. 1. Each node in the TBT also has a weight Ci and a
personalization value Qi associated to it, along with the number of unpaired outbound links
(thorns). We point out that the structure of the tree (i.e., parent-offspring relations) is solely
determined by the number of offspring.

The simpler structure of a tree compared to a general graph allows for a more precise
enumeration of its nodes. As customary in the context of branching processes, we let each
node in the TBT have a label of the form i = (i1, i2, . . . , ik) ∈ U , where U = ⋃∞

k=0(N+)k

is the set of all finite sequences of positive integers. Here, the convention is that N
0
+ = {∅}
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contains the null sequence ∅. Also, for i = (i1) we simply write i = i1, that is, without
the parenthesis. Note that this form of enumeration gives the complete lineage of each
individual in the tree.

We will use the following terminology and notation throughout the paper.

Definition 5.2. We say that a node i in the graph (resp. TBT) is at distance k of the first
(resp. root) node if it can reach the first (resp. root) node in k steps, but not in any less than
k steps.

In addition, for r ≥ 0, we define on the graph/tree the following processes:

• Ar : set of nodes in the graph at distance r of the first node.
• Âr : set of nodes in the tree at distance r of the root node (Âr is also the set of nodes in

the rth generation of TBT, with the root node being generation zero).
• Zr : number of inbound stubs of all the nodes in the graph at distance r of the first node

(Zr ≥ |Ar+1|).
• Ẑr : number of inbound stubs of all the nodes in generation r of the TBT (Ẑr = |Âr+1|).
Finally, given the extended bi-degree sequence (Nn, Dn, Cn, Qn), we introduce two empir-

ical distributions that will be used in the construction of the coupling. The first one describes
the attributes of a randomly chosen node:

f ∗
n (i, j, s, t) =

n∑
k=1

1(Nk = i, Dk = j, Ck = s, Qk = t)Pn(node k is sampled)

= 1

n

n∑
k=1

1(Nk = i, Dk = j, Ck = s, Qk = t). (5.1)

The second one, corresponds to the attributes of a node that is chosen by sampling
uniformly at random from all the Ln outbound stubs:

fn(i, j, s, t) =
n∑

k=1

1(Nk = i, Dk = j, Ck = s, Qk = t)

Pn(an outbound stub from node k is sampled)

=
n∑

k=1

1(Nk = i, Dk = j, Ck = s, Qk = t)
Dk

Ln
. (5.2)

Note that this is a size-biased distribution, since nodes with more outbound stubs are more
likely to be chosen, whereas nodes with no outbound stubs (dangling nodes) cannot be
chosen.

5.2. Construction of the Coupling

Given an extended bi-degree sequence (Nn, Dn, Cn, Qn) we now explain how to construct
the graph Gn and its coupled TBT through a breadth-first exploration process. From this
point onwards we will ignore the implicit numbering of the nodes in the definition of the
extended bi-degree sequence and rename them according to the order in which they appear
in the graph exploration process.
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To keep track of which outbound stubs have already been matched we borrow the
approach used in [65] and label them 1, 2, or 3 according to the following rules:

a.) Outbound stubs with label 1 are stubs belonging to a node that is not yet attached to
the graph.

b.) Outbound stubs with label 2 belong to nodes that are already part of the graph but
that have not yet been paired with an inbound stub.

c.) Outbound stubs with label 3 are those which have already been paired with an inbound
stub and now form an edge in the graph.

The graphGn is constructed as follows. Right before the first node is sampled, all outbound
stubs are labeled 1. To start the construction of the graph, we choose randomly a node (all
nodes with the same probability) and call it node 1. The attributes of this first node, denoted
by (N1, D1, C1, Q1), are sampled from distribution (5.1).

After the first node is chosen, its D1 outbound stubs are labeled 2. We then proceed to pair
the first of the Z0 = N1 inbound stubs of the first node with a randomly chosen outbound
stub. The corresponding node is attached to the graph by forming an edge pointing to node
1 using the chosen outbound stub, which receives a label 3, and all the remaining outbound
stubs from the new node are labeled 2. Note that it is possible that the chosen node is node 1
itself, in which case the pairing forms a self-loop and no new nodes are added to the graph.
We continue in this way until all Z0 inbound stubs of node 1 have been paired with randomly
chosen outbound stubs. Since these outbound stubs are sampled independently and with
replacement from all the possible Ln outbound stubs, this corresponds to drawing the node
attributes independently from the random distribution (5.2). Note that in the construction
of the graph any unfeasible matches will be discarded, and therefore the attributes of nodes
in Gn do not necessarily have distribution (5.2), but rather have the conditional distribution
given the pairing was feasible. We will use the vector (Ni, Di, Ci, Qi) to denote the attributes
of the ith node to be added to the graph.

In general, the kth iteration of this process is completed when all Zk−1 inbound stubs
have been matched with an outbound stub, and the corresponding node attributes have been
assigned. The process ends when all Ln inbound stubs have been paired. Note that whenever
an outbound stub with label 2 is chosen a cycle or a multiple edge is formed in the graph.

Next, we explain how the TBT is constructed. To distinguish the attribute vectors of nodes
in the TBT from those of nodes in the graph, we denote them by (N̂i, D̂i, Ĉi, Q̂i), i ∈ U .
We start with the root node (node ∅) that has the same attributes as node 1 in the graph:
(N̂∅, D̂∅, Ĉ∅, Q̂∅) ≡ (N1, D1, C1, Q1), sampled from distribution (5.1). Next, for k ≥ 1, each
of the Ẑk−1 individuals in the kth generation will independently have offspring, outbound
stubs, weight and personalization value according to the joint distribution fn(i, j, s, t) given
by (5.2).

Now, we explain how the coupling with the graph, i.e., the simultaneous construction of
the graph and the TBT, is done.

1) Whenever an outbound stub is sampled randomly in an attempt to add an edge to Gn,
then, independently of the stub’s label, a new offspring is added to the TBT. This is
done to maintain the branching property (i.i.d. node attributes). In particular, if the
chosen outbound stub belongs to node j, then the new offspring in the TBT will have
Dj − 1 outbound stubs (which will remain unpaired), Nj inbound stubs (number of
offspring), weight Cj, and personalization value Qj.
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2) If an outbound stub with label 1 is chosen, then both the graph and the TBT will
connect the chosen outbound stub to the inbound stub being matched, resulting in a
node being added to the graph and an offspring being born to its parent. We then update
the labels by giving a 2 label to all the ‘sibling’ outbound stubs of the chosen outbound
stub, and a 3 label to the chosen outbound stub itself.

3) If an outbound stub with label 2 is chosen it means that its corresponding node already
belongs to the graph, and a cycle, self-loop, or multiple edge is created. We then relabel
the chosen outbound stub with a 3. An offspring is born in the TBT according to 1).

4) If an outbound stub with label 3 is chosen it means that the chosen outbound stub has
already been matched. In terms of the construction of the graph, this case represents a
failed attempt to match the current inbound stub, and we have to keep sampling until
we draw an outbound stub with label 1 or 2. Once we do so, we update the labels
according to the rules given above. An offspring is born in the TBT according to 1).

Note that as long as we do not sample any outbound stub with label 2 or 3, the graph
Gn and the TBT are identical. Once we draw the first outbound stub with label 2 or 3 the
processes Zk and Ẑk may start to disagree. The moment this occurs we say that the coupling
has been broken. Nonetheless, we will continue with the pairing process following the rules
given above until all Ln inbound stubs have been paired. The construction of the TBT also
continues in parallel by keeping the synchronization of the pairing whenever the inbound
stub being matched belongs to a node that is both in the graph and the tree. If the pairing
of all Ln inbound stubs is completed after k iterations of the process, then we will have
completed k generations in the TBT. Moreover, up to the time the coupling breaks, a node
i ∈ Âk is also the jth node to be added to the graph, where:

j = 1 +
k−2∑
r=0

Ẑr +
ik−1−1∑

s=1

N̂(i1,...,ik−2,s) + ik ,

with the convention that
∑b

r=a xr = 0 if b < a.

Definition 5.3. Let τ be the number of generations in the TBT that can be completed
before the first outbound stub with label 2 or 3 is drawn, i.e., τ = k if and only if the first
inbound stub to draw an outbound stub with label 2 or 3 belonged to a node i ∈ Âk.

The main result in this section consists in showing that provided the extended bi-degree
sequence (Nn, Dn, Cn, Qn) satisfies Assumption 5.1, the coupling breaks only after a number
of generations that is of order log n, which combined with Proposition 4.2 will allow us to
approximate the rank of a randomly chosen node in the graph with the rank of the root node
of the coupled TBT.

5.3. The Coupling Lemma

It follows from the construction in Section 5.2 that, before the coupling breaks, the neigh-
borhood of node 1 in Gn and of the root node in the TBT are identical. Recall also from
Proposition 4.2 that we only need a finite number k of matrix iterations to approximate the
elements of the rank vector to any desired precision. Furthermore, the weight matrix M is
such that the elements (Mr)i,1, 1 ≤ i ≤ n, 1 ≤ r ≤ k, depend only on the k-neighborhood
of node 1. Hence, if the coupling holds for τ > k generations, then the rank score of node 1
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in Gn is exactly the same as that of the root node of the TBT restricted to those same k gen-
erations. The following coupling lemma will allow us to complete the appropriate number
of generations in the tree to obtain the desired level of precision in Proposition 4.2. Its proof
is rather technical and is therefore postponed to Section 9.1.

Lemma 5.4. Suppose (Nn, Dn, Cn, Qn) satisfies Assumption 5.1. Then,

• for any 1 ≤ k ≤ h log n with 0 < h < 1/(2 log μ), if μ > 1,
• for any 1 ≤ k ≤ nb with 0 < b < min{1/2, γ }, if μ ≤ 1,

we have

P (τ ≤ k| 
n) =

⎧⎪⎨
⎪⎩

O
(
(n/μ2k)−1/2

)
, μ > 1,

O
(
(n/k2)−1/2

)
, μ = 1,

O
(
n−1/2

)
, μ < 1,

as n → ∞.

Remark 5.5. The constant μ was defined in Assumption 5.1, and it corresponds to the
limiting expected number of offspring that each node in the TBT (with the exception of the
root node) will have. The coupling between the graph and the TBT will hold for any μ > 0.

We conclude from Lemma 5.4 that if R̂(n,k) := R̂(n,k)

∅ denotes the rank of the root node of
the TBT restricted to the first k generations, then, for any δ > 0,

P
(∣∣∣R(n,k)

1 − R̂(n,k)

∣∣∣ > n−δ

∣∣∣
n

)
≤ P(τ < k|
n) := ϕ(k, n).

Note that the super index n in R̂(n,k) does not refer to the number of nodes in the tree,
but rather to the distributions f ∗

n and fn (given in (5.1) and (5.2), respectively) used in the
construction of the TBT.

This observation, combined with Proposition 4.2, implies that if we let kn = �h log n�,
when μ > 1, and kn = nε, when μ ≤ 1, where h = (1 − ε)/(2 log μ) and 0 < ε <

min{1/3, γ }, then

P
(∣∣∣R(n,∞)

1 − R̂(n,kn)

∣∣∣ > n−δ

∣∣∣
n

)
≤ P

(∣∣∣R(n,∞)

1 − R(n,kn)

1

∣∣∣ > n−δ/2
∣∣∣
n

)
+ P

(∣∣∣R(n,kn)

1 − R̂(n,kn)

∣∣∣ > n−δ/2
∣∣∣
n

)
= O

(
nδckn + ϕ(kn, n)

)
= O

(
nδ−h| log c| + n−ε/2

)
. (5.3)

In view of (5.3), analyzing the distribution of R(n,k)

1 in the graph reduces to analyzing the
rank of the root node of the coupled TBT, R̂(n,k). In the next section, we compute R̂(n,k) by
relating it to a linear process constructed on the TBT.

5.4. Computing the Rank of Nodes in the TBT

In order to compute R̂(n,k) we need to introduce a new type of weights. To simplify the nota-
tion, for i = (i1, . . . , ik) we will use (i, j) = (i1, . . . , ik , j) to denote the index concatenation
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Fig. 2. Weighted branching process.

operation; if i = ∅, then (i, j) = j. Each node i is then assigned a weight �̂i according to
the recursion

�̂∅ ≡ 1 and �̂(i,j) = �̂iĈ(i,j), i ∈ U .

Note that the �̂i’s are the products of all the weights Ĉj along the path leading to node i, as
depicted in Fig. 2.

Next, for each fixed k ∈ N and each node i in the TBT define R̂(n,k)

i to be the rank of
node i computed on the subtree that has i as its root and that is restricted to having only k
generations, with each of its |Âk| leaf nodes having rank r0. In mathematical notation,

R̂(n,k)

i =
N̂i∑

j=1

Ĉ(i,j)R̂
(n,k−1)

(i,j) + Q̂i, k ≥ 1, R̂(n,0)

j = r0. (5.4)

Iterating (5.4) gives

R̂(n,k) =
∑
i∈Â1

�̂iR̂
(n,k−1)

i + Q̂∅ =
∑
i∈Â1

�̂i

⎛
⎝ N̂i∑

j=1

Ĉ(i,j)R̂
(n,k−2)

(i,j) + Q̂i

⎞
⎠ + Q̂∅

=
∑
i∈Â2

�̂iR̂
(n,k−2)

i +
∑
i∈Â1

�̂iQ̂i + Q̂∅ = · · · =
∑
i∈Âk

�̂ir0 +
k−1∑
s=0

∑
i∈Âs

�̂iQ̂i. (5.5)

The last step in our proof of the main result is to identify the limit of R̂(n,kn) as n → ∞,
for a suitable chosen kn → ∞. This is done in the next section.

6. COUPLING WITH A WEIGHTED BRANCHING PROCESS

The last step in the derivation of our approximation for the rank of a randomly chosen node in
the graph Gn is to substitute the rank of the root node in the TBT, which is defined with respect
to empirical distributions based on the extended bi-degree sequence (Nn, Dn, Cn, Qn), with
a limiting random variable independent of the size of the graph, n.

The appropriate limit will be given in terms of a solution to a certain SFPE. The appeal
of having such a representation is that these solutions have been thoroughly studied in the
WBPs literature, and in many cases exact asymptotics describing their tail behavior are
available [43, 44, 56]. We will elaborate more on this point after we state our main result.

As already mentioned in Section 2, our main result shows that

R(n,∞)

1 ⇒ R∗
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as n → ∞, where R∗ can be written in terms of the so-called attracting endogenous solution
to a linear SFPE. Before we write the expression for R∗ we will need to introduce a few
additional concepts.

6.1. The Linear Branching Stochastic Fixed-Point Equation

We define the linear branching SFPE according to:

R D=
N∑
j=1

CjRj + Q, (6.1)

where (Q, N , C1, C2, . . . ) is a real-valued random vector with N ∈ N∪{∞}, P(|Q| > 0) >

0, and the {Ri} are i.i.d. copies of R, independent of the vector (Q, N , C1, C2, . . . ). The vector
(Q, N , C1, C2, . . . ) is often referred to as the generic branching vector, and in the general
setting is allowed to be arbitrarily dependent, with the weights {Ci}not necessarily identically
distributed. This equation is also known as the “smoothing transform” [1, 4, 32, 39].

In the context of ranking algorithms, we can identify N with the in-degree of a node,
Q with its personalization value, and the {Ci} with the weights of the neighboring nodes
pointing to it. We now explain how to construct a solution to (6.1).

Similarly as what we did in Section 5.4 and using the same notation introduced there,
we construct a weighted tree using a sequence {(Qi, Ni, C(i,1), C(i,2), . . . )}i∈U of i.i.d. copies
of the vector (Q, N , C1, C2, . . . ) to define its structure and its node attributes. The set of
individuals in the kth generation of the tree, denoted Ak , can be obtained recursively using

A0 = {∅}, Ak = {(i, ik) : i ∈ Ak−1, 1 ≤ ik ≤ Ni}.
This construction is known in the literature as a WBP [60]. Next, to each node i in the tree
we assign a weight �i according to the recursion

�∅ ≡ 1 and �(i,j) = �i C(i,j), i ∈ U .

Then, the random variable formally defined as

R :=
∞∑

k=0

∑
i∈Ak

�iQi (6.2)

is called the attracting endogenous solution to (6.1), and provided E
[∑N

i=1 |Ci|β
]

< 1 for

some 0 < β ≤ 1, it is well defined (see [44], Lemma 4.1). The term “attracting” is due
to the fact that R, as defined in (6.2), is the unique limit under iterations of (6.1) provided
one starts with a well-behaved initial distribution, i.e., one having enough moments. The
name “endogenous” comes from its explicit construction in terms of the weighted tree.
We point out that equation (6.1) has in general multiple solutions [4, 5], and even multiple
endogenous solutions when the Ci’s are real-valued [41], so it is important to emphasize
that the one considered here is the attracting endogenous one.

Comparing (5.5) and (6.2) suggests that R̂(n,kn) should converge to R provided the dis-
tribution of the attribute vectors in the TBT converges to the distribution of the generic
branching vector in the WBP, but in order to formalize this heuristic there are two dif-
ficulties that we need to overcome. The first one is that the TBT was defined using a
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sequence of (conditionally) independent vectors of the form {(N̂i, Q̂i, Ĉi)}i∈U , where by
construction (see Assumption 5.1 and (5.2)) the generic attribute vector (N̂1, Q̂1, Ĉ1) has
dependent components. Note that this implies that the vectors (Q̂i, N̂i, Ĉ(i,1), Ĉ(i,2), . . . ) and
{(Q̂(i,j), N̂(i,j), Ĉ(i,j,1), Ĉ(i,j,2), . . . )}j≥1 are dependent through the dependence between N̂(i,j) and
Ĉ(i,j), which destroys the branching property of the WBP. The second problem is that the
root node of the TBT has a different distribution from the rest of the nodes in the tree.

It is therefore to be expected that we will need something more than weak convergence
of the node attributes to obtain the convergence of R̂(n,kn) we seek. To solve the first problem
we will require that (N̂1, Q̂1, Ĉ1) converges to (N , Q, C) with C independent of (N , Q). Note
that this will naturally lead to the {Ci} being i.i.d. in (6.1). To solve the second problem we
will allow the attributes of the root node in the TBT to converge to their own limit (N0, Q0).
In view of these observations we can now identify the limit of R̂(n,kn) to be:

R∗ :=
N0∑
i=1

CiRi + Q0, (6.3)

where the {Ri} are i.i.d. copies of R, as given by (6.2), independent of the vector
(N0, Q0, {Ci}) with {Ci} i.i.d. and independent of (N0, Q0). The appropriate condition ensur-
ing that R∗ is the correct limit is given in terms of the Kantorovich-Rubinstein distance
(also known as the minimal l1 distance or the Wasserstein distance of order one).

Definition 6.1. Consider the metric space (Rd , || · ||1), where ||x||1 is the l1 norm in R
d .

Let M(μ, ν) denote the set of joint probability measures on R
d × R

d with marginals μ and
ν. Then, the Kantorovich-Rubinstein distance between μ and ν is given by

d1(μ, ν) = inf
π∈M(μ,ν)

∫
Rd×Rd

||x − y||1 dπ(x, y).

We point out that d1 is only strictly speaking a distance when restricted to the subset of
measures

P1(R
d) :=

{
μ ∈ P(Rd) :

∫
Rd

||x − x0||1 dμ(x) < ∞
}

,

for some x0 ∈ R
d , where P(Rd) is the set of Borel probability measures on R

d . We refer
the interested reader to [67] for a thorough treatment of this distance, since Definition 6.1
gives only a special case.

An important property of the Kantorovich-Rubinstein distance is that if {μk}k∈N is a
sequence of probability measures in P1(R

d), then convergence in d1 to a limit μ ∈ P1(R
d)

is equivalent to weak convergence. Furthermore, d1 satisfies the useful duality formula:

d1(μ, ν) = sup
||ψ ||Lip≤1

{∫
Rd

ψ(x)dμ(x) −
∫

Rd
ψ(x)dν(x)

}

for all μ, ν ∈ P1(R
d), where the supremum is taken over al Lipschitz continuous functions

ψ : R
d → R with Lipschitz constant one (see Remark 6.5 in [67]).

We now give the required assumption. With some abuse of notation, for joint distribution
functions Fn, F ∈ R

d we write d1(Fn, F) to denote the Kantorovich-Rubinstein distance

between their probability measures μn and μ. The symbol
P→ denotes convergence in

probability.
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Assumption 6.2. Given the extended bi-degree sequence (Nn, Dn, Cn, Qn) define

F∗
n (m, q) := 1

n

n∑
k=1

1(Nk ≤ m, Qk ≤ q) and

Fn(m, q, x) :=
n∑

k=1

1(Nk ≤ m, Qk ≤ q, Ck ≤ x)
Dk

Ln
.

Suppose there exist random vectors (N0, Q0)and (N , Q), and a random variableC, such that

d1(F
∗
n , F∗)

P→ 0 and d1(Fn, F)
P→ 0,

as n → ∞, where

F∗(m, q) := P(N0 ≤ m, Q0 ≤ q) and F(m, q, x) := P(N ≤ m, Q ≤ q)P(C ≤ x).

Remark 6.3. Note that Assumption 6.2 and the duality formula imply that

sup
{
En

[
ψ(N̂1, Q̂1, Ĉ1)

]
− E[ψ(N , Q, C)] : ψ is bounded and continuous

}
converges to zero in probability, and therefore, by the bounded convergence theorem,

E
[
ψ(N̂1, Q̂1, Ĉ1)

]
→ E[ψ(N , Q, C)], n → ∞,

for any bounded and continuous function ψ , or equivalently, (N̂1, Q̂1, Ĉ1) ⇒ (N , Q, C);
similarly, (N̂∅, Q̂∅) ⇒ (N0, Q0). The duality formula, combined with Assumption 5.1, also
implies that E[N0] = ν1, E[N ] = μ and E[C] = ν5/ν1.

6.2. Main Result

We are now ready to state the main result of this paper, which establishes the convergence of
the rank of a randomly chosen node in the DCM to a non-degenerate random variable R∗.

Theorem 6.4. Suppose the extended bi-degree sequence (Nn, Dn, Cn, Qn) satisfies
Assumptions 5.1 and 6.2. Then,

R(n,∞)

1 ⇒ R∗

as n → ∞, where R∗ is defined as in (6.3) with the weights {Ci} i.i.d. and independent of
(N0, Q0), respectively of (N , Q) in (2.1).

Proof. Define 
n according to Assumption 5.1 and note that P(
c
n) = O(n−ε), so it

suffices to show that R(n,∞)

1 , conditional on 
n, converges weakly to R∗. Note that by
Assumption 5.1, ρ = E[N ]E[|C|] = ν5μ/ν1 < 1, which is a sufficient condition for R to
be well defined (see Lemma 4.1 in [44]). First, when μ > 1, fix 0 < δ < | log c|/(2 log μ)

and let kn = s log n, where δ/| log c| < s < 1/(2 log μ). Next, note that by the arguments
leading to (5.3),

P
(∣∣∣R(n,∞)

1 − R̂(n,kn)

∣∣∣ > n−δ

∣∣∣
n

)
= O

(
nδckn + (μ2kn/n)1/2

)
= O

(
nδ−s| log c| + n(2s log μ−1)/2

) = o(1)
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as n → ∞. When μ ≤ 1 we can take kn = nε, with ε < min{1/2, γ }, to obtain that the
probability converges to zero. We then obtain that conditionally on 
n,∣∣∣R(n,∞)

1 − R̂(n,kn)

∣∣∣ ⇒ 0.

Finally, by Assumption 6.2 and Theorem 3 in [27], we obtain that, conditionally on 
n,

R̂(n,kn) ⇒ R∗

as n → ∞.

6.3. Asymptotic Behavior of the Limit

We end this section by giving a limit theorem describing the tail asymptotics of R∗; its proof
is given in Section 9.2. This result covers the case where the weights {Ci} are nonnegative
and either the limiting in-degree N or the limiting personalization value Q have a regularly
varying distribution, which in turn implies the regular variation of R. Then, we deduce the
asymptotics of R∗ using some results for weighted random sums with heavy-tailed sum-
mands. The corresponding theorems can be found in [56,68]. We point out that Theorem 6.4
holds for any bi-degree sequence such that the out-degrees have finite 2 + κ moments, and
the regular variation in this section is only used to prove the “power law hypothesis” on the
scale-free DCM. Moreover, results on the asymptotic behavior of R when it has light tails
have been recently obtained in [3].

As mentioned earlier, the value of having exact asymptotics for the tail distribution of R∗

lies in fact that we can clearly see the impact that the degree distributions, the weights, and the
personalization values have on the ranking results. In particular, Theorem 6.6 below shows
that generalized PageRank is dominated by the in-degree whenever N is regularly varying
and is heavier than the personalization value Q, whereas the weights {Ci} and the out-degree
distribution only influence the asymptotic behavior of the ranking distribution through their
moments. In other words, generalized PageRank is in some sense a ‘popularity’ ranking.

Definition 6.5. We say that a function f is regularly varying at infinity with index −α,
denoted f ∈ R−α , if f (x) = x−αL(x) for some slowly varying function L; and L : [0, ∞) →
(0, ∞) is slowly varying if limx→∞ L(λx)/L(x) = 1 for any λ > 0.

We use the notation f (x) ∼ g(x) as x → ∞ for limx→∞ f (x)/g(x) = 1.

Theorem 6.6. Suppose the generic branching vector (Q, N , C1, C2, . . . ) is such that the
weights {Ci} are nonnegative, bounded i.i.d. copies of C, independent of (N , Q), N ∈ N

and Q ∈ R. Define ρ = E[N ]E[C] and ρα = E[N ]E[Cα] and let R be defined as in (6.2).

• If P(N > x) ∈ R−α , α > 1, ρ ∨ ρα < 1, P(N0 > x) ∼ θP(N > x) as x → ∞ for
some θ > 0, E[Q], E[Q0] > 0, and E

[|Q|α+ε + |Q0|α+ε
]

< ∞ for some ε > 0, then

P(R∗ > x) ∼ (E[N0]E[Cα] + θ(1 − ρα))
(E[Q]E[C])α

(1 − ρ)α(1 − ρα)
P(N > x), x → ∞.

• If P(Q > x) ∈ R−α , α > 1, ρ∨ρα < 1, P(Q0 > x) ∼ θP(Q > x) as x → ∞ for some
θ > 0, E[|Q|β + |Q0|β] < ∞ for all 0 < β < α, and E

[|N |α+ε + |N0|α+ε
]

< ∞ for
some ε > 0, then

P(R∗ > x) ∼ (E[N0]E[Cα] + θ(1 − ρα)) (1 − ρα)
−1P(Q > x), x → ∞.
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Remark 6.7. (i) For the original PageRank we have Ci = c/Di and Qi = 1 − c, where
c ∈ (0, 1) is the damping factor. This leads to a limiting weight distribution of the form
C = c/D, where D has the limiting size-biased out-degree distribution, i.e.,

P(D = j) = lim
n→∞

1

Ln

n∑
i=1

1(Di = j)Di.

(ii) Applying Theorem 6.6 to PageRank when P(N > x) ∈ R−α and P(N0 > x) ∼
θP(N > x) for some constant θ > 0 gives that

P(R∗ > x) ∼ θ ′P(N > x) as x → ∞,

where θ ′ > 0 is determined by the theorem, i.e., it establishes the “power-law hypothesis”.
(iii) The theorem above only includes two possible cases of the relations between (N0, Q0)

and (N , Q). The exact asymptotics of R∗ can be obtained from those of R in more cases
than these using the same techniques; we leave the details to the reader.

(iv) Theorem 6.6 requires the weights {Ci} to be nonnegative, which is not a condition in
Theorem 6.4. The tail asymptotics of R, and therefore of R∗, in the real-valued case are
unknown.

7. ALGORITHM TO GENERATE BI-DEGREE SEQUENCES

As an example of an extended bi-degree sequence satisfying Assumptions 5.1 and 6.2, we
give in this section an algorithm based on sequences of i.i.d. random variables. The method
for generating the bi-degree sequence (Nn, Dn) is taken from [25], where the goal was to
generate a directed random graph with prescribed in- and out-degree distributions.

To define the algorithm we need to first specify target distributions for the in- and out-
degrees, which we will denote by f in

k = P(N = k), and f out
k = P(D = k), k ≥ 0,

respectively. Furthermore, we will assume that these target distributions satisfy E[N ] =
E[D ],

F in(x) =
∑
k>x

f in
k ≤ x−αLin(x) and Fout(x) =

∑
k>x

f out
k ≤ x−βLout(x),

for some slowly varying functions Lin and Lout, and α > 1, β > 2. In other words, the
degree tail distributions need to be dominated by regularly varying functions, a condition
that can easily be verified using Markov’s inequality whenever the in-degrees have 1 + ε

moments and the out-degrees have 2 + ε moments. To the original construction given in
[25] we will need to add two additional steps to generate the weight and personalization
sequences Cn and Qn, for which we require two more distributions Fζ (x) = P(ζ ≤ x) and
FQ(x) = P(Q ≤ x) with support on the real line and satisfying

P(|ζ | ≤ c) = 1 for some 0 < c < 1, and E[|Q|1+εQ ] < ∞ for some 0 < εQ ≤ 1.

Let

κ0 = min{1 − α−1, 1/2}.
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The IID Algorithm:

a.) Fix 0 < δ0 < κ0.
b.) Sample an i.i.d. sequence {N1, . . . , Nn} from distribution F in; let N n = ∑n

i=1 Ni.
c.) Sample an i.i.d. sequence {D1, . . . , Dn} from distribution Fout, independent of {Ni};

let D n = ∑n
i=1 Di.

d.) Define �n = N n − D n. If |�n| ≤ n1−κ0+δ0 proceed to step 5; otherwise repeat from
step 2.

e.) Choose randomly |�n| nodes {i1, i2, . . . , i|�n|} without replacement and let

Ni =
{

Ni + 1 if �n < 0 and i ∈ {i1, i2, . . . , i|�n|},
Ni otherwise,

Di =
{

Di + 1 if �n ≥ 0 and i ∈ {i1, i2, . . . , i|�n|},
Di otherwise.

f.) Sample an i.i.d. sequence {Q1, . . . , Qn} from distribution FQ, independent of {Ni}
and {Di}.

g.) Sample an i.i.d. sequence {ζ1, . . . , ζn} from distribution Fζ , independent of {Ni}, {Di}
and {Qi}, and set Ci = ζi/Di if Di ≥ 1 or Ci = c sgn(ζi) otherwise.

Remark 7.1. Note that since E[|N − D |1+a] < ∞ for any 0 < a < min{α − 1, β − 1},
then E[|N − D |1+(κ0−δ0)/(1−κ0)] < ∞, and Lemma 9.2 in Section 9 gives

P
(|�n| > n1−κ0+δ0

) = O
(
n−δ0(κ0−δ0)/(1−κ0)

)
(7.1)

as n → ∞.

The two propositions below give the desired properties. Their proofs are given in
Section 9.3.

Proposition 7.2. The extended bi-degree sequence (Nn, Dn, Cn, Qn) generated by the IID
Algorithm satisfies Assumption 5.1 for any 0 < κ < β − 2, any 0 < γ < min{(κ0 −
δ0)

2/(1 − δ0), (β − 2 − κ)/β}, μ = ν1 = E[N ] = E[D ], ν2 = (E[D ])2, ν3 = E[D 2],
ν4 = E[D 2+κ ], ν5 = E[|ζ |]P(D ≥ 1), H = E[|Q|] + 1, and some ε > 0.

Proposition 7.3. The extended bi-degree sequence (Nn, Dn, Cn, Qn) generated by the IID
Algorithm satisfies Assumption 6.2 with

F∗(m, q) = P(N ≤ m)P(Q ≤ q) and

F(m, q, x) = P(N ≤ m)P(Q ≤ q)E[1(ζ/D ≤ x)D ]/μ.

8. NUMERICAL EXAMPLES

To complement the theoretical contribution of the paper, we use the IID Algorithm described
in the previous section to provide some numerical results showing the accuracy of the
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WBP approximation to PageRank. To generate the in- and out-degrees we use a Poisson
distribution mixed with a Pareto rate. More precisely, we set

N ∼ Poisson(X), D ∼ Poisson(Y ),

where Poisson(λ) is a Poisson random variable with mean λ, X is a Pareto random variable
with parameters (α, bα), with bα = μ(α − 1)/α, and Y is a Pareto random variable with
parameters (β, bβ), with bβ = μ(β − 1)/β; α, β > 1. The scale parameters of X and Y
are chosen so that E[N ] = E[X] = E[Y ] = E[D ] = μ. It can be verified (see, e.g.
Exercise 6.12 in [64]) that N and D will be independent integer valued random variables
satisfying

c1k−α ≤ P(N ≥ k) ≤ c2k−α and c3k−β ≤ P(D ≥ k) ≤ c4k−β ,

for some constants c1, c2, c3, c4 > 0 and all k = 1, 2, . . . .
We then use the IID Algorithm to generate the bi-degree sequence (Nn, Dn) using N and

D as the prescribed in- and out-degree distributions, respectively. Note that in the original
PageRank, we have ζi = c and Qi = 1 − c. Given this extended bi-degree sequence, we
next proceed to construct the graph and the TBT simultaneously, according to the rules
described in Section 5. To compute R(n,∞) we perform matrix iterations with r0 = 1 until
‖R(n,k) − R(n,k−1)‖2 < ε0 for some tolerance ε0. We only generate the TBT for as many
generations as it takes to construct the graph, with each generation corresponding to a step
in the breadth-first graph exploration process. The computation of the root node of the TBT,
R̂(n,k) is done recursively starting from the leaves using

R̂(n,0)

i = 1 for i ∈ Âk , R̂(n,r)
i =

N̂i∑
j=1

c

D̂(i,j)

R̂(n,r−1)

(i,j) + 1 − c, for i ∈ Âr , 0 ≤ r < k.

To draw a sample from R∗, note that by Proposition 7.3, R∗ in the IID Algorithm has
the same distribution as R, i.e., the attracting endogenous solution to the SFPE

R D=
N∑
i=1

CiRi + 1 − c,

where P(C ≤ x) = E[1(c/D ≤ x)D ]/μ, or equivalently, where C = c/D with P(D =
k) = E[1(D = k)D ]/μ for k = 1, 2, . . . . Since the weights {Ci} are nonnegative, the
endogenous solution is unique. To simulate copies of D we generate a Pareto random
variable Z with parameters (β − 1, bβ) and set D = Poisson(Z)+ 1. To sample copies of R
we use the Population Dynamics algorithm studied in [26] with generic branching vector
(1 − c, N , {Ci}), with the {Ci} i.i.d. and independent of N .

To show the convergence of R(n,∞)

1 to R∗ and compare the intermediate approximations
used in the proof of Theorem 6.4, we simulated 1000 samples of R(n,∞)

1 , R(n,kn)

1 , R̂(n,kn) and
R∗, respectively, to approximate the distribution of these quantities. We let n = 10, 100
and 10000 and set the other parameters to be α = 1.5, β = 2.5, μ = E[N ] = E[D ] = 2,
c = 0.3. For the TBT, we simulated up to kn = �log n� generations; for the WBP, we
simulated 9 generations. Figure 3 shows the empirical CDFs for the four distributions and
n = 10000. The approximations are so accurate that the CDFs are almost indistinguishable.

Figure 4 illustrates the weak convergence of PageRank on the graph, R(n,∞)

1 , to its
limit R∗ as the size of the graph grows. To make the average degree closer to that in
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Fig. 3. The empirical CDFs of 1000 samples of R∗, R(n,∞)

1 , R(n,kn)

1 and R̂(n,kn) for n = 10000 and
kn = 9. [Color figure can be viewed at wileyonlinelibrary.com]

Fig. 4. The empirical CDFs of 1000 samples of R∗ and R(n,∞)

1 for n = 10, 100 and 10000. [Color
figure can be viewed at wileyonlinelibrary.com]

real-world networks we set μ = E[N ] = E[D ] = 10, leaving all other parameters the
same.

To illustrate the validity of the SFPE approximation outside the theoretical framework of
this paper, we tested our approximation on the English Wikipedia graph, available from the
Laboratory for Web Algorithmics at the University of Milan [14, 16]. The graph contains
more than four million pages (a page has an article of an item, e.g., Mathematics). Pages
correspond to nodes and hyperlinks to other Wikipedia pages correspond to (directed) edges.
We compared the empirical distribution of the PageRanks of all pages, with c = 0.85, to
the distribution of the attracting endogenous solution to the corresponding SFPE, i.e., using
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Fig. 5. The log-log plot of the complementary CDFs of the PageRanks of four million English
Wikipedia pages and the unique endogenous solution to the corresponding SFPE. [Color figure can
be viewed at wileyonlinelibrary.com]

the empirical distribution of the in- and out-degree from the real graph. The results are
shown in Fig. 5. The two distributions are remarkably close, especially considering that the
English Wikipedia graph cannot be modeled accurately using a DCM due to its higher level
of clustering.

9. PROOFS

The last section of the paper contains most of the proofs. For the reader’s convenience we
have organized them in subsections according to the order in which their corresponding
statements appear in the paper.

9.1. Proof of the Coupling Lemma

Recall from Section 5 that N̂∅ denotes the number of offspring of the root node in the TBT
(chosen from distribution (5.1)) and N̂1 denotes the number of offspring of a node chosen
from distribution (5.2). Throughout this section we will also need to define

μ∗
n = En

[
N̂∅

]
=

∑
i,j,s,t

if ∗
n (i, j, s, t) = 1

n

n∑
k=1

Nk = Ln

n
,

and

μn = En

[
N̂1

]
=

∑
i,j,s,t

ifn(i, j, s, t) = 1

Ln

n∑
k=1

NkDk .

Before we give the proof of the Coupling Lemma 5.4 we will need the following estimates
for the growth of the process {Ẑk}.
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Lemma 9.1. Suppose (Nn, Dn, Cn, Qn) satisfies Assumption 5.1 and recall that μ = ν2/ν1.
Then, for any constant K > 0, any nonnegative sequence {xn} with xn → ∞ and any
k = O(nγ ),

P

(
max
0≤r≤k

Ẑr

μr
> Kxn

∣∣∣∣∣
n

)
= O

(
x−1

n

)
, n → ∞.

Proof. Start by noting that for any r = 0, 1, 2, . . . ,

En[Ẑr] = μ∗
nμ

r
n. (9.1)

Moreover, on the event 
n,

μn = nν2(1 + O(n−γ ))

nν1(1 + O(n−γ ))
= μ(1 + O(n−γ )), and

μ∗
n = nν1(1 + O(n−γ ))

n
= ν1(1 + O(n−γ )).

Next, note that conditionally on Fn, the process

Xr = Ẑr

μ∗
nμ

r
n

= 1

μ∗
nμ

r
n

∑
i∈Âr−1

N̂i, r ≥ 1, X0 = N̂∅
μ∗

n

is a nonnegative martingale with respect to the filtration σ (Fr ∪ Fn), where Fr =
σ
(

N̂i : i ∈ Âs, s ≤ r
)

. Therefore, we can apply Doob’s inequality, conditionally on Fn,

to obtain

P

(
max
0≤r≤k

Ẑr

μr
> Kxn

∣∣∣∣∣
n

)
= P

(
max
0≤r≤k

Xrμ
∗
nμ

r
n

μr
> Kxn

∣∣∣∣
n

)

= P

(
max
0≤r≤k

Xrν1(1 + O(n−γ ))r+1 > Kxn

∣∣∣∣
n

)

≤ 1

P(
n)
E

[
1(
n)En

[
1

(
max
0≤r≤k

Xr >
Kxn

ν1(1 + O(n−γ ))k+1

)]]

≤ 1

P(
n)
E

[
1(
n)

En[Xk]ν1(1 + O(n−γ ))k+1

Kxn

]

= ν1(1 + O(n−γ ))k+1

Kxn
(since En[Xk] = 1).

Noting that (1 + O(n−γ ))k = eO(kn−γ ) = O(1) as n → ∞ gives that this last term is O(x−1
n ).

This completes the proof.

We now give the proof of the coupling lemma.

Proof of Lemma 5.4. Start by defining

xn =

⎧⎪⎨
⎪⎩

(n/μ2k)1/2, μ > 1,

(n/k2)1/2, μ = 1,

n1/2, μ < 1,

and Fk =
{

max
0≤r≤k

Ẑr

μr
≤ xn

}
.
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Note that xn → ∞ as n → ∞ for all 1 ≤ k ≤ h log n when μ > 1 and for all 1 ≤ k ≤ nb,
b < min{1/2, γ }, when μ ≤ 1. The constraint b < γ will allow us to use Lemma 9.1.

In addition to the process {Ẑr : r ≥ 0} that keeps track of the inbound stubs in the TBT,
we define V̂r to be the number of outbound stubs of all the nodes in generation r.

Next, note that the jth inbound stub of node i ∈ As (where the label i refers to the order
in which the node was added to the graph during the exploration process) will be the first
one to be paired with an outbound stub having label 2 or 3 with probability

1

Ln

(
s−1∑
r=0

V̂r +
i−1∑
t=1

Dt + (j − 1)

)
≤ 1

Ln

s∑
r=0

V̂r =: Ps.

It follows that,

P(τ = s|
n) ≤ P(τ = s, Fk|
n) + P(τ = s, Fc
k |
n)

≤ P(Bin(Ẑs, Ps) ≥ 1, Fk|
n) + P(τ = s, Fc
k |
n),

where Bin(n, p) is a Binomial random variable with parameters (n, p). It follows that if we
let Fk = σ(Ẑr , V̂r : 1 ≤ r ≤ k), then

P(τ ≤ k|
n) =
k∑

s=0

P(τ = s|
n)

≤
k∑

s=0

{
P
(

Bin(Ẑs, Ps) ≥ 1, Fk

∣∣∣
n

)
+ P

(
τ = s, Fc

k

∣∣
n

)}

≤
k∑

s=0

E
[

1(Fk)P(Bin(Ẑs, Ps) ≥ 1|Fk)

∣∣∣
n

]
+ P

(
Fc

k

∣∣
n

)

≤
k∑

s=0

E
[

1(Fk)ẐsPs

∣∣∣
n

]
+ P

(
Fc

k

∣∣
n

)
,

where in the last step we used Markov’s inequality. Now, use the bound for Ẑs implied by
Fk and recall that |Âr| = Ẑr−1 to obtain

E
[

1(Fk)ẐsPs

∣∣∣
n

]
≤ E [μsxnPs| 
n]

= μsxn

ν1n

s∑
r=0

E
[

V̂r

∣∣∣
n

]
(1 + O(n−γ ))

= μsxn

ν1n

{
E
[

V̂0

∣∣∣
n

]
+

s∑
r=1

E
[
En

[
V̂r

∣∣∣ Ẑr−1

]∣∣∣
n

]}
(1 + O(n−γ ))

= μsxn

ν1n

{
E
[
μ∗

n

∣∣
n

] +
s∑

r=1

E
[

Ẑr−1λn

∣∣∣
n

]}
(1 + O(n−γ )), (9.2)

where in the first equality we used that on the set 
n we have Ln = ν1n(1 + O(n−γ )), and
on the second equality we used the observation that

En

[
V̂0

]
= En

[
D̂∅

]
= μ∗

n, En

[
V̂r

∣∣∣ Ẑr−1

]
= Ẑr−1λn, r ≥ 1,
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where λn = En[D̂1]. Moreover, on the set 
n we have that

λn = 1

Ln

n∑
k=1

D2
k = nν3(1 + O(n−γ ))

nν1(1 + O(n−γ ))
= λ(1 + O(n−γ )),

so we obtain

E
[

1(Fk)ẐsPs

∣∣∣
n

]
≤ μsxn

ν1n

{
ν1 +

s∑
r=1

λE
[

Ẑr−1

∣∣∣
n

]}
(1 + O(n−γ ))

= μsxn

ν1n

{
ν1 +

s∑
r=1

λE
[
μ∗

nμ
r−1
n

∣∣
n

]}
(1 + O(n−γ )) (by (9.1)).

Using the observation that E
[
μ∗

nμ
r−1
n

∣∣
n

] = ν1μ
r−1(1 + O(n−γ ))r−1 (see the proof of

Lemma 9.1), and the condition r − 1 < s ≤ k = O(nγ ), gives

P(τ ≤ k|
n) ≤ (1 + O(1))
(λ + 1)xn

n

k∑
s=0

s∑
r=0

μs+r + P(Fc
k |
n).

Note that we did not compute E
[

ẐsPs

∣∣∣
n

]
in (9.2) directly, since that would have led

to having to compute En

[
Ẑ2

s−1

]
and neither N̂0 nor N̂1 are required to have finite second

moments in the limit. Now, since by Lemma 9.1 we have that P(Fc
k |
n) = O

(
x−1

n

)
, and

k∑
s=0

s∑
r=0

μs+r ≤

⎧⎪⎨
⎪⎩

μ2(k+1)/(μ − 1)2, μ > 1,

(k + 1)(k + 2)/2, μ = 1,

1/(1 − μ), μ < 1,

we conclude that

P(τ ≤ k|
n) =

⎧⎪⎨
⎪⎩

O
(
xnμ

2kn−1 + x−1
n

) = O
(
(n/μ2k)−1/2

)
, μ > 1,

O
(
xnk2n−1 + x−1

n

) = O
(
(n/k2)−1/2

)
, μ = 1,

O
(
xnn−1 + x−1

n

) = O
(
n−1/2

)
, μ < 1,

as n → ∞. This completes the proof.

9.2. Proof of the Asymptotic Behavior of R∗

We give in this section the proof of Theorem 6.6 which describes the asymptotic behavior of
the limit R∗, which is essentially determined by the asymptotic behavior of the endogenous
solution R given in (6.2). The tail behavior of R is the main focus of the work in [43–45,
56, 68].

Proof of Theorem 6.6. We consider the case when N is regularly varying first. By
Theorem 3.4 in [56] and the remarks that follow it (see also Theorem 4.1 in [68]),

P(R > x) ∼ (E[Q]E[C1])α

(1 − ρ)α(1 − ρα)
P(N > x), x → ∞,
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and therefore, P(R > x) ∈ R−α . Next, since the {Ci} are i.i.d. and independent of N ,
Minkowski’s inequality gives for any β ≥ 1,

E

⎡
⎣
( N∑

i=1

Ci

)β
⎤
⎦ = E

⎡
⎣E

⎡
⎣
( N∑

i=1

Ci

)β
∣∣∣∣∣∣N

⎤
⎦
⎤
⎦ ≤ E

[
N βE[Cβ

1 ]
]

. (9.3)

Applying Lemma 2.3 in [56] with β = 1+δ gives that E[|R|1+δ] < ∞ for all 0 < δ < α−1.
By conditioning on the filtration Fk = σ

(
(Ni, C(i,1), C(i,2), . . . ) : i ∈ As, s < k

)
it can be

shown that E
[∑

i∈Ak
�iQi

]
= ρkE[Q], which implies that E[R] = (1 − ρ)−1E[Q] > 0.

Also, by Lemma 3.7(2) in [46] we have

P

( N0∑
i=1

Ci > x

)
∼ (E[C1])α P(N0 > x) ∼ θ

(1 − ρ)α(1 − ρα)

(E[Q])α
P(R > x).

Using Theorem A.1 in [56] we conclude that

P(R∗ > x) ∼
(

E[N0]E[Cα
1 ] + θ

(1 − ρ)α(1 − ρα)

(E[Q])α
(E[R])α

)
P(R > x)

∼ (
E[N0]E[Cα

1 ] + θ(1 − ρα)
) (E[Q]E[C1])α

(1 − ρ)α(1 − ρα)
P(N > x)

as x → ∞.
Now, for the case when Q is regularly varying, note that E

[ (∑N
i=1 Ci

)α+ε ]
< ∞ by (9.3)

and the theorem’s assumptions. Then, by Theorem 4.4 in [56] (see also Theorem 4.1 in [68])
we have

P(R > x) ∼ (1 − ρα)
−1P(Q > x), x → ∞.

The same observations made for the previous case give E[|R|1+δ] < ∞ for all 0 < δ < α−1.
It follows that,

P (Q0 > x) ∼ θP (Q > x) ∼ θ(1 − ρα)P(R > x).

Hence, by Theorem A.2 in [56], we have that

P (R∗ > x) ∼ (
E[N0]E[Cα

1 ] + θ(1 − ρα)
)

P(R > x)

∼ (
E[N0]E[Cα

1 ] + θ(1 − ρα)
)
(1 − ρα)

−1P(Q > x)

as x → ∞.

9.3. Proofs of Properties of the IID Algorithm

Before giving the proofs of Propositions 7.2 and 7.3 we state a version of Burkholder’s
inequality that will be used throughout this section.

Lemma 9.2. Let {Xi}i≥1 be a sequence of i.i.d., mean zero random variables such that
E[|X1|1+κ ] < ∞ for some 0 < κ ≤ 1. Then,

P

(∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣ > x

)
≤ 1

x1+κ
E

⎡
⎣
∣∣∣∣∣

n∑
i=1

Xi

∣∣∣∣∣
1+κ

⎤
⎦ ≤ K1+κE[|X1|1+κ ] n

x1+κ
,

where K1+κ is a constant that depends only on κ .
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Proof. It follows from Markov’s inequality, followed by Burkholder’s inequality applied
to the mean zero random walk Sn = X1 +· · ·+ Xn, and the inequality

(∑
i yi

)β ≤ ∑
i yβ

i for
any yi ≥ 0 and 0 < β ≤ 1.

We now proceed to prove that the extended bi-degree sequence generated by the IID
Algorithm satisfies Assumptions 5.1 and 6.2.

Proof of Proposition 7.2. It suffices to show that P
(

c

n,i

) = O(n−ε) for some ε > 0 and
i = 1, . . . , 4. Throughout the proof let Bn = {|�n| ≤ n1−κ0+δ0} and recall that by (7.1)
P(Bc

n) = O
(
n−δ0η

)
, where η = (κ0 − δ0)/(1 − κ0).

We start with 
n,2. Let ν2 = (E[D ])2 and define χi = Di − Di, τi = Ni − Ni. Note that
χi, τi ∈ {0, 1} for all i = 1, . . . , n; moreover, either all the {χi} or all the {τi} are zero, and
therefore χiτj = 0 for all 1 ≤ i, j ≤ n. We now have∣∣∣∣∣

n∑
i=1

DiNi − nν2

∣∣∣∣∣ ≤
∣∣∣∣∣

n∑
i=1

DiNi − nν2

∣∣∣∣∣ +
∣∣∣∣∣

n∑
i=1

(Diτi + χiNi)

∣∣∣∣∣ .

Since |�n| ≤ n1−κ0+δ0 on Bn, we have

P(
c
n,2) = P

(∣∣∣∣∣
n∑

i=1

DiNi − nν2

∣∣∣∣∣ > n1−γ

∣∣∣∣∣Bn

)

≤ 1

P(Bn)

{
P

(∣∣∣∣∣
n∑

i=1

DiNi − nν2

∣∣∣∣∣ >
n1−γ

2

)
+ P

(
n∑

i=1

(Diτi + χiNi) >
n1−γ

2
, Bn

)}
.

Since E[(D1N1)
1+η] = E[N 1+η

1 ]E[D 1+η

1 < ∞, we can apply Lemma 9.2 to obtain

P

(∣∣∣∣∣
n∑

i=1

DiNi − nν2

∣∣∣∣∣ >
n1−γ

2

)
= O

(
n−η+(1+η)γ

)
.

For the remaining probability use Markov’s inquality, conditionally on Gn = σ((Ni, Di) :
1 ≤ i ≤ n), to obtain

P

(
n∑

i=1

(Diτi + χiNi) >
n1−γ

2
, Bn

)
≤ 2

n1−γ
E

[
1(Bn)E

[
n∑

i=1

(Diτi + χiNi)

∣∣∣∣∣Gn

]]
.

To bound this last expectation note that

E
[
Diτi + χiNi| Gn

] = Di
�+

n

n
+ Ni

�−
n

n
,

where x+ = max{x, 0} and x− = max{0, −x}, and therefore,

1

n1−γ
E

[
1(Bn)E

[
n∑

i=1

(Diτi + χiNi)

∣∣∣∣∣Gn

]]
≤ 1

n1−γ
E

[
1(Bn)

|�n|
n

n∑
i=1

(Di + Ni)

]

≤ nγ−κ0+δ0−1E

[
n∑

i=1

(Di + Ni)

]

= 2E[D ]nγ−κ0+δ0 .
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It follows from these estimates that

P(
c
n,2) = O

(
n−η(κ0−δ0)/(1+η)+γ

)
. (9.4)

Next, we can analyze 
n,1 by considering the sequence {Dϑ
i } where ϑ can be taken to

be 1, 2 or 2 + κ . Correspondingly, we have ν1 = E[D ], ν3 = E[D 2] and ν4 = E[D 2+κ ].
Similarly as what was done for 
n,2, note that∣∣∣∣∣

n∑
i=1

Dϑ
i − nE[Dϑ ]

∣∣∣∣∣ ≤
∣∣∣∣∣

n∑
i=1

Dϑ
i − nE[Dϑ ]

∣∣∣∣∣ +
n∑

i=1

(
(Di + χi)

ϑ − Dϑ
i

)

≤
∣∣∣∣∣

n∑
i=1

Dϑ
i − nE[Dϑ ]

∣∣∣∣∣ +
n∑

i=1

ϑ(Di + 1)ϑ−1χi,

where we used the inequality (d + x)ϑ − dϑ ≤ ϑ(d + 1)ϑ−1x for d ≥ 0, x ∈ [0, 1] and
ϑ ≥ 1. Now note that E[(Dϑ)1+σ ] < ∞ for any 0 < σ < (β −2−κ)/(2+κ); in particular,
since γ < (β − 2 − κ)/β, we can choose γ /(1 − γ ) < σ < (β − 2 − κ)/(2 + κ). For such
σ , Lemma 9.2 gives

P

(∣∣∣∣∣
n∑

i=1

Dϑ
i − nE[Dϑ ]

∣∣∣∣∣ >
n1−γ

2

)
= O

(
n−σ+(1+σ)γ

)
.

For the term involving the {χi} we use Markov’s inequality followed by the same arguments
used above to obtain

P

(
n∑

i=1

ϑ(Di + 1)ϑ−1χi >
n1−γ

2
, Bn

)
≤ 2ϑ

n1−γ
E

[
1(Bn)E

[
n∑

i=1

(Di + 1)ϑ−1χi

∣∣∣∣∣Gn

]]

= 2ϑ

n1−γ
E

[
1(Bn)

�−
n

n

n∑
i=1

(Di + 1)ϑ−1

]

≤ 2ϑ

nκ0−δ0−γ
E
[
(D + 1)ϑ−1

]
.

It follows that

P(
c
n,1) ≤ 1

P(Bn)
· O

(
n−σ+(1+σ)γ + n−(κ0−δ0−γ )

)
. (9.5)

Now note that since |ζ | ≤ c < 1 a.s., then E[|ζ |2] < ∞ and Lemma 9.2 gives

P(
c
n,3) = P

(∣∣∣∣∣
n∑

r=1

|ζr|1(Dr ≥ 1) − nν5

∣∣∣∣∣ > n1−γ

)

≤ P

(∣∣∣∣∣
n∑

r=1

|ζr|1(Dr ≥ 1) − nν5

∣∣∣∣∣ + c|�n| > n1−γ

)
= O

(
n−1+2γ

)
. (9.6)

Finally, by Lemma 9.2 and (7.1),

P(
c
n,4) ≤ P

(∣∣∣∣∣
n∑

r=1

|Qr| − nE[|Q|]
∣∣∣∣∣ > n

∣∣∣∣∣Bn

)
= O

(
n−εQ + n−δ0η

)
. (9.7)
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Our choice of 0 < γ < min{η(κ0 − δ0)(1 + η), σ/(1 + σ)} guarantees that all the
exponents of n in expressions (9.4) - (9.7) are strictly negative, which completes the proof.

Proof of Proposition 7.3. We will show that d1(F∗
n , F∗) and d1(Fn, F) converge to zero

a.s. by using the duality formula for the Kantorovich-Rubinstein distance. To simplify the
notation let Sn = D n = ∑n

i=1 Di and Ck = ζk/Dk1(Dk ≥ 1) + c sgn(ζk)1(Dk = 0). Fix
ψ∗ : R

2 → R and ψ : R
3 → R to be Lipschitz continuous functions with Lipschitz

constant one. Then,

E0 :=
∣∣∣∣∣1

n

n∑
k=1

ψ∗(Nk , Qk) − 1

n

n∑
k=1

ψ∗(Nk , Qk)

∣∣∣∣∣
≤ 1

n

n∑
k=1

|ψ∗(Nk + 1, Qk) − ψ∗(Nk , Qk)| 1(Nk = Nk + 1)

≤ 1

n

n∑
k=1

1(Nk = Nk + 1) ≤ |�n|
n

,

and

E1 :=
∣∣∣∣∣

n∑
k=1

ψ(Nk , Qk , Ck)
Dk

Ln
−

n∑
k=1

ψ(Nk , Qk , Ck)
Dk

Sn

∣∣∣∣∣
≤

n∑
k=1

Dk

Sn
|ψ(Nk , Qk , Ck) − ψ(Nk , Qk , Ck)| 1(�n ≤ 0)

+
n∑

k=1

Dk

Ln
|ψ(Nk , Qk , Ck) − ψ(Nk , Qk , Ck)| 1(�n > 0)

+
n∑

k=1

∣∣∣∣ψ(Nk , Qk , ζk/Dk)

(
Dk

Ln
− Dk

Sn

)∣∣∣∣ 1(�n > 0)

≤
n∑

k=1

Dk

Sn
1(Nk = Nk + 1) +

n∑
k=1

Dk

Ln
|ζk/(Dk + 1) − Ck| 1(Dk = Dk + 1)

+
n∑

k=1

|ψ(Nk , Qk , Ck)|
∣∣∣∣ (Dk − Dk)Sn − Dk�n

LnSn

∣∣∣∣ 1(�n > 0),

where we used the fact that ψ∗ and ψ have Lipschitz constant one. To bound further E1 use
the Cauchy-Schwarz inequality to obtain

n∑
k=1

Dk

Sn
1(Nk = Nk + 1) ≤ n

Sn

(
1

n

n∑
k=1

D 2
k

)1/2 ( |�n|
n

)1/2

.

Now, use the observation that |ζk| ≤ c to obtain
n∑

k=1

Dk

Ln
|ζk/(Dk + 1) − Ck| 1(Dk = Dk + 1)

≤ c
n∑

k=1

1

LnDk
1(Dk = Dk + 1, Dk ≥ 1) +

n∑
k=1

1

Ln
|ζk − c sgn(ζk)| 1(Dk = Dk + 1, Dk = 0)

≤ c

Ln

n∑
k=1

1(Dk = Dk + 1) ≤ c|�n|
Sn

.
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Next, use the bound |ψ(m, q, x)| ≤ ||(m, q, x)||1 + |ψ(0, 0, 0)| and Hölder’s inequality to
obtain

n∑
k=1

|ψ(Nk , Qk , Ck)|
∣∣∣∣ (Dk − Dk)Sn − Dk�n

LnSn

∣∣∣∣ 1(�n > 0)

≤
n∑

k=1

|ψ(Nk , Qk , Ck)| 1(Dk = Dk + 1)

Sn
+

n∑
k=1

|ψ(Nk , Qk , Ck)| Dk|�n|
S2

n

≤ 1

Sn

n∑
k=1

‖(Nk , Qk , c)‖1 1(Dk = Dk + 1) + |�n|
S2

n

n∑
k=1

(NkDk + |Qk|Dk + c)

+ 2|ψ(0, 0, 0)�n|
Sn

≤ n

Sn

⎧⎨
⎩
(

1

n

n∑
k=1

N 1+δ
k

)1/(1+δ)

+
(

1

n

n∑
k=1

|Qk|1+δ

)1/(1+δ)
⎫⎬
⎭
( |�n|

n

)δ/(1+δ)

+ |�n|
S2

n

n∑
k=1

(NkDk + |Qk|Dk) + H|�n|
Sn

,

where 0 < δ < min{α − 1, εQ} and H = 2|ψ(0, 0, 0)| + 2c. Combining the three bounds
derived above, we have obtained

E1 ≤ n

Sn

(
1

n

n∑
k=1

D 2
k

)1/2 ( |�n|
n

)1/2

+ c|�n|
Sn

+ n

Sn

⎧⎨
⎩
(

1

n

n∑
k=1

N 1+δ
k

)1/(1+δ)

+
(

1

n

n∑
k=1

|Qk|1+δ

)1/(1+δ)
⎫⎬
⎭
( |�n|

n

)δ/(1+δ)

+ |�n|
S2

n

n∑
k=1

(NkDk + |Qk|Dk) + H|�n|
Sn

.

Now note that since the bi-degree sequence is constructed on the event |�n| ≤ n1−κ0+δ0 ,
we have that E0 ≤ n−κ0+δ0 a.s. To show that E1 converges to zero a.s. use the Strong
Law of Large Numbers (SLLN) (recall that E[D 2] < ∞ and that N , D , Q are mutually
independent).

Finally, by the SLLN again and the fact that E[||(N , Q, C )||1] < ∞, we have

lim
n→∞

1

n

n∑
k=1

ψ∗(Nk , Qk) = lim
n→∞

1

n

n∑
k=1

ψ∗(Nk , Qk) = E[ψ∗(N , Q)] a.s.

and

lim
n→∞

n∑
i=1

ψ(Nk , Qk , Ck)
Di

Sn
= lim

n→∞

n∑
k=1

ψ(Nk , Qk , Ck)
Dk

Sn
= 1

μ
E[ψ(N , Q, C )D ] a.s.

The first limit combined with the duality formula gives that d1(F∗
n , F∗) → 0 a.s. For the

second limit we still need to identify the limiting distribution, for which we note that

1

μ
E[ψ(N , Q, C )D ] = 1

μ
E
[
E[ψ(N , Q, C )D |N , Q]]
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= 1

μ
E

[ ∞∑
i=1

∫ ∞

−∞
ψ(N , Q, z/i)i dFζ (z)P(D = i)

]

= 1

μ
E

[ ∞∑
i=1

∫ ∞

−∞
ψ(N , Q, y)i dFζ (yi)P(D = i)

]

=: E
[
ψ(N , Q, Y)

]
,

where Y has distribution function

P(Y ≤ x) = 1

μ
E

[ ∞∑
i=1

∫ ∞

−∞
1(y ≤ x)i dFζ (yi)P(D = i)

]

= 1

μ
E

[ ∞∑
i=1

iFζ (ix)P(D = i)

]

= 1

μ
E[DFζ (Dx)] = 1

μ
E[D1(ζ/D ≤ x)]

= P(C ≤ x).

It follows that E[ψ(N , Q, C )D ]/μ = E[ψ(N , Q, C)], which combined with the duality
formula gives that d1(Fn, F) → 0 a.s.
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