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1. Extended proof of Lemma 3.2. This is an extended proof of
Lemma 3.2 from Olvera-Cravioto et al. (2009) that includes the case when
a = 3. The value o = 3 constitutes the boundary between infinite and
finite variance, and results about the asymptotic behavior of P(S, > )
usually imply additional technical subtleties. For this reason most authors
have ignored this specific value of a.

LEMMA 3.2, Let X1, Xo,... be itd nonnegative random variables with
p = E[X] < oo, and P(X; > t) = t=*TLL(t) where L(-) is slowly varying
and o > 2. Set S, = X1+ +Xp, n>1. Forany A (a—1))"t <y <1
define My (z) = |(x—x7)/p]. Then, there exists a function p(t) | 0 ast T oo
such that

P(S, > )

sup — 1] < p(x).
1<n<M, (z) INP(X1 > 2 — (n—1)u) (@)

PROOF. Suppose first that o > 3 and let o(n) = /(o — 2)nlogn. Since

P(S, > z) _ P(S;, >x—np)
nP(X1>z—(mn—1)u) nPY1>z—nu)

where V; = X; —pand S} = YY) +--- 4+ Y,. Then the result will follow
from Theorem 4.4.1 from Borovkov and Borovkov (2008) once we show that
(x —np)/o(n) — oo uniformly for 1 < n < M, (z). To see this simply note
that

T x — My(z)p T A

on) = o(My(x)) Va-2 Jioga

Since > 1/2, the above converges to infinity.
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Suppose now that o € (2,3) and note that P(Y; < —t) = 0 for ¢t > p.
Note also that since F(t) = P(Y; > t) is regularly varying with index a — 1,
then o(n) = F_l(l/n) = n'/(@=D [(n) for some slowly varying function L(-)
(see Bingham et al., 1987). Then the result will follow from Theorem 3.4.1
from Borovkov and Borovkov (2008) once we show that (z —nu)/o(n) — oo
uniformly for 1 <n < M, (z). To see this note that

x—np _ x— M (x)p zY 27—/ (a=1)

~

o(n) = oMy (2)) ~ o(z/u)  p@DL(z)

and since v > 1/(a — 1), the above converges to infinity.

We now give the proof for the case a = 3; the arguments we give here are
based on an upper and lower bound. Let 1/2 < n <~ and y =z —nu — z".
Define

L uP(Yi > u)du, if [CuP(Yi > u)du = oo,
& [SuP(Yr > u)du, if [{PuP(Y: > u)du < oo,

Va(t) = {

and
1

Ws(t) = —2/ uP (Y1 < —u)du.
t= Jo
Set

W:”P@Qmmmmix—me*”%Qmmmnix—mmay

Note that for 1 <n < M, (x),

y . y _w—npu
|In(nP(Yy >z —np))| — |[mPYy >z —p)] (a—1)Inz’

Therefore,
sup <  sup Cn [va (‘Tl "“) + Wy (95 ”“)]
1<n< M, () 1<n< M, (z) nr Inz
¥ ¥
<o)+ (52)
n Inx Inx
~CZ eI L(x)

1
< Ol

for some constants C,C’ > 0 and some slowly varying function L. Since
2n — 1 > 0, then the above converges to zero, and by Corollary 3.1.7 from
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Borovkov and Borovkov (2008),

P(S: > o —
sup (S5 > 2 —np)

< 1+e(z ),
1<n< M, () PP (Y1 > @ — np)

for some €(t) | 0 ast | 0.

For the lower bound redefine y = 2 — nu + 2%y/n — 1, f = n — 1/2, and
let Qn(u) = P(S;;/v/n < —u); note that y ~ & — nu as © — oo, uniformly
for 1 <n < M,(z). By Theorem 2.5.1 from Borovkov and Borovkov (2008)
we have

nf P(S} >z —np)
1<n<M,(z) nP(Y1 > x — np)
P(Y1 > y)

1
> inf 1—Q, 1% - =P, )
- 1§n1§1}\4-y(x) P(Y1 >x—np) ( @1 (@) 2 (V1>y)

>(C  inf (1 — anl(fﬁﬂ) —nP(Y; > y))

1<n<My(z)

for some constant C' > 0. We will prove that the expression above converges
to one. We start by noting that

sup  nP(Y1 >y) < My(x)P(Y1 >z — My (x)p)

1<n< My (z)
<Py > 2
W
1—(a—1)y
~ L),

1

Since (v — 1)y —1 > 0, then the above converges to zero. Finally, choose
1 < 1/n < k < 2. Then, by Pyke and Root (1968), E[|Z,|"] = o(n) as
n — 00, so there exists a constant C’ > 0 such that

E[Sial] _ Cn—1)?

By — p(_g* B /m —
anl(x ) - P( Sn—l > n 1) é xﬁﬁ'(n_ 1),{/2 — xﬁ/{

It follows that 1. 1—k/2—08
Clg > —R1==Pr
sup Qn—l(x/g) < o 1-k/2

1<n< M (x) H

Our choice of k guarantees that 1 — k/2 — Sk = 1 — ki < 0, so the above
converges to zero. This completes the proof. O
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