ON THE TRANSITION FROM HEAVY TRAFFIC TO HEAVY TAILS FOR THE M/G/1 QUEUE: THE REGULARLY VARYING CASE

By Mariana Olvera-Cravioto Jose Blanchet AND Peter Glynn

Columbia University, Columbia University and Stanford University

1. Extended proof of Lemma 3.2. This is an extended proof of Lemma 3.2 from Olvera-Cravioto et al. (2009) that includes the case when $\alpha = 3$. The value $\alpha = 3$ constitutes the boundary between infinite and finite variance, and results about the asymptotic behavior of $P(S_n > x)$ usually imply additional technical subtleties. For this reason most authors have ignored this specific value of α .

LEMMA 3.2. Let X_1, X_2, \ldots be iid nonnegative random variables with $\mu = E[X] < \infty$, and $P(X_1 > t) = t^{-\alpha+1}L(t)$ where $L(\cdot)$ is slowly varying and $\alpha > 2$. Set $S_n = X_1 + \cdots + X_n$, $n \ge 1$. For any $(2 \land (\alpha - 1))^{-1} < \gamma < 1$ define $M_{\gamma}(x) = \lfloor (x - x^{\gamma})/\mu \rfloor$. Then, there exists a function $\varphi(t) \downarrow 0$ as $t \uparrow \infty$ such that

$$\sup_{1 \le n \le M_{\gamma}(x)} \left| \frac{P(S_n > x)}{nP(X_1 > x - (n-1)\mu)} - 1 \right| \le \varphi(x).$$

PROOF. Suppose first that $\alpha > 3$ and let $\sigma(n) = \sqrt{(\alpha - 2)n \log n}$. Since

$$\frac{P(S_n > x)}{nP(X_1 > x - (n-1)\mu)} = \frac{P(S_n^* > x - n\mu)}{nP(Y_1 > x - n\mu)},$$

where $Y_i = X_i - \mu$ and $S_n^* = Y_1 + \cdots + Y_n$. Then the result will follow from Theorem 4.4.1 from Borovkov and Borovkov (2008) once we show that $(x - n\mu)/\sigma(n) \to \infty$ uniformly for $1 \le n \le M_{\gamma}(x)$. To see this simply note that

$$\frac{x - n\mu}{\sigma(n)} \ge \frac{x - M_{\gamma}(x)\mu}{\sigma(M_{\gamma}(x))} \sim \sqrt{\frac{\mu}{\alpha - 2}} \cdot \frac{x^{\gamma - 1/2}}{\sqrt{\log x}}.$$

Since $\gamma > 1/2$, the above converges to infinity.

Suppose now that $\alpha \in (2,3)$ and note that $P(Y_1 \leq -t) = 0$ for $t \geq \mu$. Note also that since $\overline{F}(t) = P(Y_1 > t)$ is regularly varying with index $\alpha - 1$, then $\sigma(n) = \overline{F}^{-1}(1/n) = n^{1/(\alpha-1)}\tilde{L}(n)$ for some slowly varying function $\tilde{L}(\cdot)$ (see Bingham et al., 1987). Then the result will follow from Theorem 3.4.1 from Borovkov and Borovkov (2008) once we show that $(x - n\mu)/\sigma(n) \to \infty$ uniformly for $1 \leq n \leq M_{\gamma}(x)$. To see this note that

$$\frac{x-n\mu}{\sigma(n)} \geq \frac{x-M_{\gamma}(x)\mu}{\sigma(M_{\gamma}(x))} \sim \frac{x^{\gamma}}{\sigma(x/\mu)} \sim \frac{x^{\gamma-1/(\alpha-1)}}{\mu^{-1/(\alpha-1)}\tilde{L}(x)},$$

and since $\gamma > 1/(\alpha - 1)$, the above converges to infinity.

We now give the proof for the case $\alpha = 3$; the arguments we give here are based on an upper and lower bound. Let $1/2 < \eta < \gamma$ and $y = x - n\mu - x^{\eta}$. Define

$$V_{\alpha}(t) = \begin{cases} \frac{1}{t^2} \int_0^t u P(Y_1 > u) \, du, & \text{if } \int_0^\infty u P(Y_1 > u) \, du = \infty, \\ \frac{1}{t^2} \int_0^\infty u P(Y_1 > u) \, du, & \text{if } \int_0^\infty u P(Y_1 > u) \, du < \infty, \end{cases}$$

and

$$W_{\beta}(t) = \frac{1}{t^2} \int_0^\infty u P(Y_1 < -u) du.$$

 Set

$$\Pi^* = n \left[V_{\alpha} \left(\frac{y}{|\ln(nP(Y_1 > x - n\mu))|} \right) + W_{\beta} \left(\frac{y}{|\ln(nP(Y_1 > x - n\mu))|} \right) \right].$$

Note that for $1 \leq n \leq M_{\gamma}(x)$,

$$\frac{y}{|\ln(nP(Y_1 > x - n\mu))|} \ge \frac{y}{|\ln P(Y_1 > x - \mu)|} \sim \frac{x - n\mu}{(\alpha - 1)\ln x}.$$

Therefore,

$$\sup_{1 \le n \le M_{\gamma}(x)} \Pi^{*} \le \sup_{1 \le n \le M_{\gamma}(x)} Cn \left[V_{\alpha} \left(\frac{x - n\mu}{\ln x} \right) + W_{\beta} \left(\frac{x - n\mu}{\ln x} \right) \right]$$
$$\le C \frac{x}{\mu} \left[V_{\alpha} \left(\frac{x^{\gamma}}{\ln x} \right) + W_{\beta} \left(\frac{x^{\gamma}}{\ln x} \right) \right]$$
$$\sim C \frac{x}{\mu} \cdot x^{-2\gamma} \tilde{L}(x)$$
$$\le C' x^{-2\eta + 1}$$

for some constants C, C' > 0 and some slowly varying function \tilde{L} . Since $2\eta - 1 > 0$, then the above converges to zero, and by Corollary 3.1.7 from

Borovkov and Borovkov (2008),

$$\sup_{1 \le n \le M_{\gamma}(x)} \frac{P(S_n^* > x - n\mu)}{nP(Y_1 > x - n\mu)} \le 1 + \epsilon(x^{-2\eta+1}),$$

for some $\epsilon(t) \downarrow 0$ as $t \downarrow 0$.

For the lower bound redefine $y = x - n\mu + x^{\beta}\sqrt{n-1}$, $\beta = \eta - 1/2$, and let $Q_n(u) = P(S_n^*/\sqrt{n} < -u)$; note that $y \sim x - n\mu$ as $x \to \infty$, uniformly for $1 \le n \le M_{\gamma}(x)$. By Theorem 2.5.1 from Borovkov and Borovkov (2008) we have

$$\inf_{\substack{1 \le n \le M_{\gamma}(x) \\ 1 \le n \le M_{\gamma}(x) }} \frac{P(S_{n}^{*} > x - n\mu)}{nP(Y_{1} > x - n\mu)}} \\
\ge \inf_{\substack{1 \le n \le M_{\gamma}(x) \\ 1 \le n \le M_{\gamma}(x) }} \frac{P(Y_{1} > y)}{P(Y_{1} > x - n\mu)} \left(1 - Q_{n-1}(x^{\beta}) - \frac{n-1}{2}P(Y_{1} > y)\right) \\
\ge C \inf_{\substack{1 \le n \le M_{\gamma}(x) \\ 1 \le n \le M_{\gamma}(x) }} \left(1 - Q_{n-1}(x^{\beta}) - nP(Y_{1} > y)\right)$$

for some constant C > 0. We will prove that the expression above converges to one. We start by noting that

$$\sup_{1 \le n \le M_{\gamma}(x)} nP(Y_1 > y) \le M_{\gamma}(x)P(Y_1 > x - M_{\gamma}(x)\mu)$$
$$\le \frac{x}{\mu}P(Y_1 > x^{\gamma})$$
$$\sim \frac{x^{1-(\alpha-1)\gamma}}{\mu}L(x^{\gamma}).$$

Since $(\alpha - 1)\gamma - 1 > 0$, then the above converges to zero. Finally, choose $1 < 1/\eta < \kappa < 2$. Then, by Pyke and Root (1968), $E[|\hat{Z}_n|^{\kappa}] = o(n)$ as $n \to \infty$, so there exists a constant C' > 0 such that

$$Q_{n-1}(x^{\beta}) = P(-S_{n-1}^* > x^{\beta}\sqrt{n-1}) \le \frac{E\left[|S_{n-1}^*|^{\kappa}\right]}{x^{\beta\kappa}(n-1)^{\kappa/2}} \le \frac{C'(n-1)^{1-\kappa/2}}{x^{\beta\kappa}}.$$

It follows that

$$\sup_{1 \le n \le M_{\gamma}(x)} Q_{n-1}(x^{\beta}) \le \frac{C' x^{1-\kappa/2-\beta\kappa}}{\mu^{1-\kappa/2}}.$$

Our choice of κ guarantees that $1 - \kappa/2 - \beta \kappa = 1 - \kappa \eta < 0$, so the above converges to zero. This completes the proof.

References.

- Bingham, N. H., Goldie, C., and Teugels, J. (1987). Regular Variation. Cambridge University Press, Cambridge.
- Borovkov, A. and Borovkov, K. (2008). Asymptotic Analysis of Random Walks. Cambridge University Press, New York.
- Olvera-Cravioto, M., Blanchet, J., and Glynn, P. (2009). On the transition from heavy traffic to heavy tails for the M/G/1 queue: The regularly varying case. Submitted for publication.
- Pyke, R. and Root, D. (1968). On convergence in r-mean of normalized partial sums. Annals of Mathematical Statistics, 39(2):379–381.

E-MAIL: molvera@ieor.columbia.edu

E-MAIL: jose.blanchet @columbia.edu

E-MAIL: glynn@stanford.edu

4