ON THE TRANSITION FROM HEAVY TRAFFIC TO HEAVY TAILS FOR THE M/G/1 QUEUE: THE REGULARLY VARYING CASE

By Mariana Olvera-Cravioto
Jose Blanchet
AND
Peter Glynn
Columbia University, Columbia University and Stanford University

1. Extended proof of Lemma 3.2. This is an extended proof of Lemma 3.2 from Olvera-Cravioto et al. (2009) that includes the case when $\alpha=3$. The value $\alpha=3$ constitutes the boundary between infinite and finite variance, and results about the asymptotic behavior of $P\left(S_{n}>x\right)$ usually imply additional technical subtleties. For this reason most authors have ignored this specific value of α.

Lemma 3.2. Let X_{1}, X_{2}, \ldots be iid nonnegative random variables with $\mu=E[X]<\infty$, and $P\left(X_{1}>t\right)=t^{-\alpha+1} L(t)$ where $L(\cdot)$ is slowly varying and $\alpha>2$. Set $S_{n}=X_{1}+\cdots+X_{n}, n \geq 1$. For any $(2 \wedge(\alpha-1))^{-1}<\gamma<1$ define $M_{\gamma}(x)=\left\lfloor\left(x-x^{\gamma}\right) / \mu\right\rfloor$. Then, there exists a function $\varphi(t) \downarrow 0$ as $t \uparrow \infty$ such that

$$
\sup _{1 \leq n \leq M_{\gamma}(x)}\left|\frac{P\left(S_{n}>x\right)}{n P\left(X_{1}>x-(n-1) \mu\right)}-1\right| \leq \varphi(x) .
$$

Proof. Suppose first that $\alpha>3$ and let $\sigma(n)=\sqrt{(\alpha-2) n \log n}$. Since

$$
\frac{P\left(S_{n}>x\right)}{n P\left(X_{1}>x-(n-1) \mu\right)}=\frac{P\left(S_{n}^{*}>x-n \mu\right)}{n P\left(Y_{1}>x-n \mu\right)},
$$

where $Y_{i}=X_{i}-\mu$ and $S_{n}^{*}=Y_{1}+\cdots+Y_{n}$. Then the result will follow from Theorem 4.4.1 from Borovkov and Borovkov (2008) once we show that $(x-n \mu) / \sigma(n) \rightarrow \infty$ uniformly for $1 \leq n \leq M_{\gamma}(x)$. To see this simply note that

$$
\frac{x-n \mu}{\sigma(n)} \geq \frac{x-M_{\gamma}(x) \mu}{\sigma\left(M_{\gamma}(x)\right)} \sim \sqrt{\frac{\mu}{\alpha-2}} \cdot \frac{x^{\gamma-1 / 2}}{\sqrt{\log x}} .
$$

Since $\gamma>1 / 2$, the above converges to infinity.

Suppose now that $\alpha \in(2,3)$ and note that $P\left(Y_{1} \leq-t\right)=0$ for $t \geq \mu$. Note also that since $\bar{F}(t)=P\left(Y_{1}>t\right)$ is regularly varying with index $\alpha-1$, then $\sigma(n)=\bar{F}^{-1}(1 / n)=n^{1 /(\alpha-1)} \tilde{L}(n)$ for some slowly varying function $\tilde{L}(\cdot)$ (see Bingham et al., 1987). Then the result will follow from Theorem 3.4.1 from Borovkov and Borovkov (2008) once we show that $(x-n \mu) / \sigma(n) \rightarrow \infty$ uniformly for $1 \leq n \leq M_{\gamma}(x)$. To see this note that

$$
\frac{x-n \mu}{\sigma(n)} \geq \frac{x-M_{\gamma}(x) \mu}{\sigma\left(M_{\gamma}(x)\right)} \sim \frac{x^{\gamma}}{\sigma(x / \mu)} \sim \frac{x^{\gamma-1 /(\alpha-1)}}{\mu^{-1 /(\alpha-1)} \tilde{L}(x)},
$$

and since $\gamma>1 /(\alpha-1)$, the above converges to infinity.
We now give the proof for the case $\alpha=3$; the arguments we give here are based on an upper and lower bound. Let $1 / 2<\eta<\gamma$ and $y=x-n \mu-x^{\eta}$. Define

$$
V_{\alpha}(t)= \begin{cases}\frac{1}{t^{2}} \int_{0}^{t} u P\left(Y_{1}>u\right) d u, & \text { if } \int_{0}^{\infty} u P\left(Y_{1}>u\right) d u=\infty \\ \frac{1}{t^{2}} \int_{0}^{\infty} u P\left(Y_{1}>u\right) d u, & \text { if } \int_{0}^{\infty} u P\left(Y_{1}>u\right) d u<\infty\end{cases}
$$

and

$$
W_{\beta}(t)=\frac{1}{t^{2}} \int_{0}^{\infty} u P\left(Y_{1}<-u\right) d u
$$

Set

$$
\Pi^{*}=n\left[V_{\alpha}\left(\frac{y}{\left|\ln \left(n P\left(Y_{1}>x-n \mu\right)\right)\right|}\right)+W_{\beta}\left(\frac{y}{\left|\ln \left(n P\left(Y_{1}>x-n \mu\right)\right)\right|}\right)\right]
$$

Note that for $1 \leq n \leq M_{\gamma}(x)$,

$$
\frac{y}{\left|\ln \left(n P\left(Y_{1}>x-n \mu\right)\right)\right|} \geq \frac{y}{\left|\ln P\left(Y_{1}>x-\mu\right)\right|} \sim \frac{x-n \mu}{(\alpha-1) \ln x} .
$$

Therefore,

$$
\begin{aligned}
\sup _{1 \leq n \leq M_{\gamma}(x)} \Pi^{*} & \leq \sup _{1 \leq n \leq M_{\gamma}(x)} C n\left[V_{\alpha}\left(\frac{x-n \mu}{\ln x}\right)+W_{\beta}\left(\frac{x-n \mu}{\ln x}\right)\right] \\
& \leq C \frac{x}{\mu}\left[V_{\alpha}\left(\frac{x^{\gamma}}{\ln x}\right)+W_{\beta}\left(\frac{x^{\gamma}}{\ln x}\right)\right] \\
& \sim C \frac{x}{\mu} \cdot x^{-2 \gamma} \tilde{L}(x) \\
& \leq C^{\prime} x^{-2 \eta+1}
\end{aligned}
$$

for some constants $C, C^{\prime}>0$ and some slowly varying function \tilde{L}. Since $2 \eta-1>0$, then the above converges to zero, and by Corollary 3.1.7 from

Borovkov and Borovkov (2008),

$$
\sup _{1 \leq n \leq M_{\gamma}(x)} \frac{P\left(S_{n}^{*}>x-n \mu\right)}{n P\left(Y_{1}>x-n \mu\right)} \leq 1+\epsilon\left(x^{-2 \eta+1}\right)
$$

for some $\epsilon(t) \downarrow 0$ as $t \downarrow 0$.
For the lower bound redefine $y=x-n \mu+x^{\beta} \sqrt{n-1}, \beta=\eta-1 / 2$, and let $Q_{n}(u)=P\left(S_{n}^{*} / \sqrt{n}<-u\right)$; note that $y \sim x-n \mu$ as $x \rightarrow \infty$, uniformly for $1 \leq n \leq M_{\gamma}(x)$. By Theorem 2.5.1 from Borovkov and Borovkov (2008) we have

$$
\begin{aligned}
& \quad \inf _{1 \leq n \leq M_{\gamma}(x)} \frac{P\left(S_{n}^{*}>x-n \mu\right)}{n P\left(Y_{1}>x-n \mu\right)} \\
& \geq \inf _{1 \leq n \leq M_{\gamma}(x)} \frac{P\left(Y_{1}>y\right)}{P\left(Y_{1}>x-n \mu\right)}\left(1-Q_{n-1}\left(x^{\beta}\right)-\frac{n-1}{2} P\left(Y_{1}>y\right)\right) \\
& \geq C \inf _{1 \leq n \leq M_{\gamma}(x)}\left(1-Q_{n-1}\left(x^{\beta}\right)-n P\left(Y_{1}>y\right)\right)
\end{aligned}
$$

for some constant $C>0$. We will prove that the expression above converges to one. We start by noting that

$$
\begin{aligned}
\sup _{1 \leq n \leq M_{\gamma}(x)} n P\left(Y_{1}>y\right) & \leq M_{\gamma}(x) P\left(Y_{1}>x-M_{\gamma}(x) \mu\right) \\
& \leq \frac{x}{\mu} P\left(Y_{1}>x^{\gamma}\right) \\
& \sim \frac{x^{1-(\alpha-1) \gamma}}{\mu} L\left(x^{\gamma}\right) .
\end{aligned}
$$

Since $(\alpha-1) \gamma-1>0$, then the above converges to zero. Finally, choose $1<1 / \eta<\kappa<2$. Then, by Pyke and Root (1968), $E\left[\left|\hat{Z}_{n}\right|^{\kappa}\right]=o(n)$ as $n \rightarrow \infty$, so there exists a constant $C^{\prime}>0$ such that

$$
Q_{n-1}\left(x^{\beta}\right)=P\left(-S_{n-1}^{*}>x^{\beta} \sqrt{n-1}\right) \leq \frac{E\left[\left|S_{n-1}^{*}\right|^{\kappa}\right]}{x^{\beta \kappa}(n-1)^{\kappa / 2}} \leq \frac{C^{\prime}(n-1)^{1-\kappa / 2}}{x^{\beta \kappa}}
$$

It follows that

$$
\sup _{1 \leq n \leq M_{\gamma}(x)} Q_{n-1}\left(x^{\beta}\right) \leq \frac{C^{\prime} x^{1-\kappa / 2-\beta \kappa}}{\mu^{1-\kappa / 2}} .
$$

Our choice of κ guarantees that $1-\kappa / 2-\beta \kappa=1-\kappa \eta<0$, so the above converges to zero. This completes the proof.

References.

Bingham, N. H., Goldie, C., and Teugels, J. (1987). Regular Variation. Cambridge University Press, Cambridge.
Borovkov, A. and Borovkov, K. (2008). Asymptotic Analysis of Random Walks. Cambridge University Press, New York.
Olvera-Cravioto, M., Blanchet, J., and Glynn, P. (2009). On the transition from heavy traffic to heavy tails for the M/G/1 queue: The regularly varying case. Submitted for publication.
Pyke, R. and Root, D. (1968). On convergence in r-mean of normalized partial sums. Annals of Mathematical Statistics, 39(2):379-381.

E-MAIL: molvera@ieor.columbia.edu E-MAIL: jose.blanchet@columbia.edu
E-MAIL: glynn@stanford.edu

