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1. Extended proof of Lemma 3.2. This is an extended proof of
Lemma 3.2 from Olvera-Cravioto et al. (2009) that includes the case when
α = 3. The value α = 3 constitutes the boundary between infinite and
finite variance, and results about the asymptotic behavior of P (Sn > x)
usually imply additional technical subtleties. For this reason most authors
have ignored this specific value of α.

Lemma 3.2. Let X1, X2, . . . be iid nonnegative random variables with
µ = E[X] < ∞, and P (X1 > t) = t−α+1L(t) where L(·) is slowly varying
and α > 2. Set Sn = X1 + · · ·+Xn, n ≥ 1. For any (2∧ (α− 1))−1 < γ < 1
define Mγ(x) = b(x−xγ)/µc. Then, there exists a function ϕ(t) ↓ 0 as t ↑ ∞
such that

sup
1≤n≤Mγ(x)

∣∣∣∣ P (Sn > x)
nP (X1 > x− (n− 1)µ)

− 1
∣∣∣∣ ≤ ϕ(x).

Proof. Suppose first that α > 3 and let σ(n) =
√

(α− 2)n log n. Since

P (Sn > x)
nP (X1 > x− (n− 1)µ)

=
P (S∗n > x− nµ)
nP (Y1 > x− nµ)

,

where Yi = Xi − µ and S∗n = Y1 + · · · + Yn. Then the result will follow
from Theorem 4.4.1 from Borovkov and Borovkov (2008) once we show that
(x − nµ)/σ(n) → ∞ uniformly for 1 ≤ n ≤ Mγ(x). To see this simply note
that

x− nµ
σ(n)

≥ x−Mγ(x)µ
σ(Mγ(x))

∼
√

µ

α− 2
· x

γ−1/2

√
log x

.

Since γ > 1/2, the above converges to infinity.
1



2 M. OLVERA-CRAVIOTO, J. BLANCHET AND P. GLYNN

Suppose now that α ∈ (2, 3) and note that P (Y1 ≤ −t) = 0 for t ≥ µ.
Note also that since F (t) = P (Y1 > t) is regularly varying with index α− 1,
then σ(n) = F

−1(1/n) = n1/(α−1)L̃(n) for some slowly varying function L̃(·)
(see Bingham et al., 1987). Then the result will follow from Theorem 3.4.1
from Borovkov and Borovkov (2008) once we show that (x−nµ)/σ(n)→∞
uniformly for 1 ≤ n ≤Mγ(x). To see this note that

x− nµ
σ(n)

≥ x−Mγ(x)µ
σ(Mγ(x))

∼ xγ

σ(x/µ)
∼ xγ−1/(α−1)

µ−1/(α−1)L̃(x)
,

and since γ > 1/(α− 1), the above converges to infinity.
We now give the proof for the case α = 3; the arguments we give here are

based on an upper and lower bound. Let 1/2 < η < γ and y = x− nµ− xη.
Define

Vα(t) =

{
1
t2

∫ t
0 uP (Y1 > u) du, if

∫∞
0 uP (Y1 > u) du =∞,

1
t2

∫∞
0 uP (Y1 > u) du, if

∫∞
0 uP (Y1 > u) du <∞,

and
Wβ(t) =

1
t2

∫ ∞
0

uP (Y1 < −u)du.

Set

Π∗ = n

[
Vα

(
y

| ln(nP (Y1 > x− nµ))|

)
+Wβ

(
y

| ln(nP (Y1 > x− nµ))|

)]
.

Note that for 1 ≤ n ≤Mγ(x),

y

| ln(nP (Y1 > x− nµ))|
≥ y

| lnP (Y1 > x− µ)|
∼ x− nµ

(α− 1) lnx
.

Therefore,

sup
1≤n≤Mγ(x)

Π∗ ≤ sup
1≤n≤Mγ(x)

Cn

[
Vα

(
x− nµ

lnx

)
+Wβ

(
x− nµ

lnx

)]
≤ C x

µ

[
Vα

(
xγ

lnx

)
+Wβ

(
xγ

lnx

)]
∼ C x

µ
· x−2γL̃(x)

≤ C ′x−2η+1

for some constants C,C ′ > 0 and some slowly varying function L̃. Since
2η − 1 > 0, then the above converges to zero, and by Corollary 3.1.7 from
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Borovkov and Borovkov (2008),

sup
1≤n≤Mγ(x)

P (S∗n > x− nµ)
nP (Y1 > x− nµ)

≤ 1 + ε(x−2η+1),

for some ε(t) ↓ 0 as t ↓ 0.
For the lower bound redefine y = x − nµ + xβ

√
n− 1, β = η − 1/2, and

let Qn(u) = P (S∗n/
√
n < −u); note that y ∼ x − nµ as x → ∞, uniformly

for 1 ≤ n ≤Mγ(x). By Theorem 2.5.1 from Borovkov and Borovkov (2008)
we have

inf
1≤n≤Mγ(x)

P (S∗n > x− nµ)
nP (Y1 > x− nµ)

≥ inf
1≤n≤Mγ(x)

P (Y1 > y)
P (Y1 > x− nµ)

(
1−Qn−1(xβ)− n− 1

2
P (Y1 > y)

)
≥ C inf

1≤n≤Mγ(x)

(
1−Qn−1(xβ)− nP (Y1 > y)

)
for some constant C > 0. We will prove that the expression above converges
to one. We start by noting that

sup
1≤n≤Mγ(x)

nP (Y1 > y) ≤Mγ(x)P (Y1 > x−Mγ(x)µ)

≤ x

µ
P (Y1 > xγ)

∼ x1−(α−1)γ

µ
L(xγ).

Since (α − 1)γ − 1 > 0, then the above converges to zero. Finally, choose
1 < 1/η < κ < 2. Then, by Pyke and Root (1968), E[|Ẑn|κ] = o(n) as
n→∞, so there exists a constant C ′ > 0 such that

Qn−1(xβ) = P (−S∗n−1 > xβ
√
n− 1) ≤

E
[
|S∗n−1|κ

]
xβκ(n− 1)κ/2

≤ C ′(n− 1)1−κ/2

xβκ
.

It follows that

sup
1≤n≤Mγ(x)

Qn−1(xβ) ≤ C ′x1−κ/2−βκ

µ1−κ/2 .

Our choice of κ guarantees that 1 − κ/2 − βκ = 1 − κη < 0, so the above
converges to zero. This completes the proof.
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