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Abstract

In this paper we consider linear functions constructed on two different weighted branching
processes and provide explicit bounds for their Kantorovich–Rubinstein distance in terms
of couplings of their corresponding generic branching vectors. Motivated by applications
to the analysis of random graphs, we also consider a variation of the weighted branching
process where the generic branching vector has a different dependence structure from the
usual one. By applying the bounds to sequences of weighted branching processes, we
derive sufficient conditions for the convergence in the Kantorovich–Rubinstein distance
of linear functions. We focus on the case where the limits are endogenous fixed points of
suitable smoothing transformations.
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1. Introduction

In this paper we study one particular solution of the linear stochastic fixed-point equation
(SFPE)

R
d=

N∑
i=1

CiRi +Q, (1)

where (Q,N,C1, C2, . . . ) is a real-valued vector with N ∈ N ∪ {∞}, and {Ri}i∈N are
independent and identically distributed (i.i.d.) random variables having the same distribution
as R. This distributional equation appears in the probabilistic analysis of algorithms and has
been studied in [9], [11], [14], [21], [22], and its homogeneous version (Q ≡ 0) has been studied
extensively in the literature of weighted branching processes and multiplicative cascades; see,
e.g. [4], [6], [12], [16], [17], and the references therein.

Although it is well known that (1) has multiple solutions (see [2]–[4], [13]), it is often the
case that in applications (e.g. [9], [11], [21]) only one of them is relevant. More precisely,
we are usually interested in the solution obtained by iterating the SFPE starting from a well-
behaved initial condition, which can be explicitly constructed on a weighted branching process
(as explained in Section 2) and hence is often referred to as a special endogenous solution. We
refer the interested reader to [2]–[4], and [13] for a more thorough discussion on the existence
of multiple solutions to (1) and the role of the endogenous solution(s) in their characterization;
in particular, the recent work in [13] treats the case of real-valued weights {Ci} where there may
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500 N. CHEN AND M. OLVERA-CRAVIOTO

be multiple endogenous solutions. The focus of this paper is to analyze the ‘most attractive’
endogenous solution mentioned above both for Q ≡ 0 and P(Q �= 0) > 0. In particular, we
consider two different weighted branching processes and compare their corresponding special
endogenous solutions in the Kantorovich–Rubinstein distance d1, also known as the Wasserstein
distance of order 1; see, e.g. [25]. Although convergence to the (unique) endogenous solution to
(1) for nonnegative weights has been previously studied in the context of the analysis of divide-
and-conquer algorithms using the Wasserstein distance of order 2 (see [19], [21], and [22]),
recent applications to the analysis of information ranking algorithms [9], [14], [26], where the
variance ofRmight be infinite, suggest the use of the weaker Kantorovich–Rubinstein distance.

Moreover, motivated by the same applications to the analysis of information ranking algo-
rithms mentioned above, we analyze a variation of the weighted branching process constructed
using a generic branching vector of the form (Q,N,C), i.e. where the weightC of a node in the
tree is allowed to depend on the node’s copy of (Q,N), rather than on its parent’s copy as is the
case with a generic branching vector of the form (Q,N,C1, C2, . . . ). To avoid confusion, we
will refer to this variation as a weighted branching tree. Using this weighted branching tree we
mimic the construction of the special endogenous solution and provide conditions under which
it will be close, in the Kantorovich–Rubinstein distance, to the special endogenous solution
to (1) constructed on a usual weighted branching process.

The main results in this paper provide explicit bounds for the Kantorovich–Rubinstein
distance between two random variables constructed according to the representation for the
special endogenous solution to (1); these bounds are given in terms of the Kantorovich–
Rubinstein distance between their generic branching vectors. We then use these bounds to
obtain the convergence of a sequence of such random variables in the same distance. We
illustrate the main results with applications to the analysis of random graphs and information
ranking algorithms.

The remainder of the paper is organized as follows. In Section 2 we describe the weighted
branching process and its variation, the weighted branching tree. Section 3 contains a brief
exposition of the Kantorovich–Rubinstein distance and some of its main properties. Section 4
contains our main results, with the explicit bounds for the Kantorovich–Rubinstein distance
given in Section 4.1. Finally, Section 5 contains applications of the main results to the analysis
of random graphs and information ranking algorithms. All the proofs in the paper are postponed
until Section 6.

2. Weighted branching processes

In order to define a weighted branching process we start by letting N+ = {1, 2, 3, . . . } be
the set of positive integers and setting U = ⋃∞

k=0(N+)k to be the set of all finite sequences
i = (i1, i2, . . . , in), n ≥ 0, where by convention N

0+ = {∅} contains the null sequence ∅. To
ease the exposition, for a sequence i = (i1, i2, . . . , ik) ∈ U we write i | n = (i1, i2, . . . , in),
provided k ≥ n, and i | 0 = ∅ to denote the index truncation at level n, n ≥ 0. Also, for i ∈ A1
we simply use the notation i = i1, i.e. without the parenthesis. Similarly, for i = (i1, . . . , in)

we will use (i, j) = (i1, . . . , in, j) to denote the index concatenation operation, if i = ∅ then
(i, j) = j .

Next, let (Q,N,C1, C2, . . . ) be a real-valued vector with N ∈ N ∪ {∞}. We will refer
to this vector as the generic branching vector. Now let {(Qi, Ni, C(i,1), C(i,2), . . . )}i∈U be a
sequence of i.i.d. copies of the generic branching vector. To construct a weighted branching
process we start by defining a tree as follows: let A0 = {∅} denote the root of the tree, and
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Coupling on weighted branching trees 501

Figure 1: Weighted branching process.

define the nth generation according to the recursion

An = {(i, in) ∈ U : i ∈ An−1, 1 ≤ in ≤ Ni}, n ≥ 1.

Now assign to each node i in the tree a weight �i according to the recursion

�∅ ≡ 1, �(i,in) = C(i,in)�i, n ≥ 1;

see Figure 1. Note that the tree’s structure, disregarding the weights, is that of a Galton–Watson
process with offspring distribution f (k) = P(N = k), provided P(N < ∞) = 1.

Using the same notation described above, now consider constructing this process using a
generic branching vector of the form (Q,N,C) with N ∈ N and a sequence of i.i.d. copies
{(Qi, Ni, Ci)}i∈U . As mentioned earlier, we will refer to this construction as a weighted
branching tree. The difference lies in the dependence structure that now governs the nodes
in the tree, since whereas in a usual weighted branching process the weight Ci of node i

is independent of (Qi, Ni), in a weighted branching tree it may not be. Another important
observation is that in a weighted branching tree the weights {Ci}i∈U are i.i.d. random variables,
unlike in a weighted branching process where the weights of ‘sibling’ nodes are arbitrarily
dependent and not necessarily identically distributed. It follows from these observations that
when C is independent of (Q,N), the corresponding weighted branching tree is a special case
of a weighted branching process.

We will now explain how to construct the special endogenous solution to the linear SFPE (1)
using a weighted branching process.

2.1. Special endogenous solution to the linear SFPE

For a weighted branching process with generic branching vector (Q,N,C1, C2, . . . ), define
the processes {W(j) : j ≥ 0} and {R(k) : k ≥ 0} as follows:

W(0) = Q0, W(j) =
∑
i∈Aj

Qi�i, j ≥ 1, (2)

R(k) =
k∑
j=0

W(j) =
k∑
j=0

∑
i∈Aj

Qi�i, k ≥ 0. (3)
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502 N. CHEN AND M. OLVERA-CRAVIOTO

By focusing on the branching vector belonging to the root node, i.e. (Q∅, N∅, C1, C2, . . . ),
we see that the processes {W(j)} and {R(k)} satisfy the distributional equations

W(j) =
N∅∑
r=1

Cr

(∑
(r,i)∈Aj Q(r,i)�(r,i)

Cr

)
d=

N∑
r=1

CrW
(j−1)
r , j ≥ 1 (4)

and

R(k) =
N∅∑
r=1

Cr

(∑k
j=1

∑
(r,i)∈Aj Q(r,i)�(r,i)

Cr

)
+Q∅

d=
N∑
r=1

CrR
(k−1)
r +Q, k ≥ 1, (5)

whereW(j−1)
r are i.i.d. copies ofW(j−1) and R(k−1)

r are i.i.d. copies of R(k−1), all independent
of (Q,N,C1, C2, . . . ). Here and throughout this paper the convention is that�(r,i)/Cr ≡ 1 if
Cr = 0.

For the homogeneous case (Q ≡ 0 in (1)), assume the weights {Ci} are nonnegative and
redefine the {W(j)} process as

W(0) = 1, W(j) =
∑
i∈Aj

�i, j ≥ 1.

In this case, and provided ρ = E[∑N
i=1 Ci] < ∞, the processM(j) = W(j)/ρj , j ≥ 0, defines

a nonnegative martingale. It follows that M(j) converges almost surely (a.s.), as j → ∞, to a
finite limit W with E[W ] ≤ 1. Taking the limit as j → ∞ in (4), it follows that W satisfies

W
d=

N∑
r=1

Cr

ρ
Wr �

N∑
r=1

C′
rWr,

where the {Wr} are i.i.d. copies ofW , independent of (N,C1, C2, . . . ). Hence,W is a solution
to the homogeneous version of (1) with the generic branching vector (N,C′

1, C
′
2, . . . ).

For the nonhomogeneous case (P(Q �= 0) > 0), one can argue, as was done in [15], that
provided E[∑N

i=1 |Ci |β ] < 1 and E[|Q|β ] < ∞ for some 0 < β ≤ 1, then the random
variable R(k) converges a.s. as k → ∞, to a finite limit R. Taking the limit as k → ∞ in (5), it
follows that R is a solution to (1). We refer to the random variables W and R described above
as the special endogenous solutions to (1) in the homogeneous and nonhomogeneous cases,
respectively. We point out that in the case of nonnegative weights, W and R are the unique
endogenous solutions to (1), whereas in the real-valued case there can be other endogenous
solutions, i.e., that can be explicitly constructed using a weighted branching process; see [13]
for more details.

3. Kantorovich–Rubinstein distance

Before proceeding to the main results in this paper we give a brief description of the
Kantorovich–Rubinstein distance. This distance on the space of probability measures is also
known as the minimal l1 metric or the Wasserstein distance of order 1. For the purposes of this
paper, we consider the vector space of infinite real sequences R

∞ having finite l1 norm, i.e.,
x ∈ R

∞ such that

‖x‖1 =
∞∑
i=1

|xi | < ∞.
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Coupling on weighted branching trees 503

On some occasions, which will become clear from the context, we will work with elements
of R

d instead. The norm ‖x‖1 will always refer to the corresponding l1 norm.

Definition 1. Let M(μ, ν) denote the set of joint probability measures on S × S (S = R
d

or R
∞) with marginals μ and ν. Then, the Kantorovich–Rubinstein distance between μ and ν

is given by

d1(μ, ν) = inf
π∈M(μ,ν)

∫
S×S

‖x − y‖1 dπ(x, y).

We point out that d1 is, strictly speaking, only a distance when restricted to the subset of
probability measures

P1(S) �
{
μ ∈ P (S) :

∫
S

‖x‖1 dμ(x) < ∞
}
,

where P (S) is the set of Borel probability measures on S. We refer the interested reader to [25]
for a thorough treatment of this distance, since Definition 1 is only a special case.

Any construction on the same probability space of the joint vector (X,Y ), where X has
distribution μ and Y has distribution ν, is called a coupling of μ and ν. In this notation we can
write d1 as

d1(μ, ν) = inf
X,Y

E[‖X − Y‖1],

where the infimum is taken over all couplings of μ and ν.
It is well known that d1 is a metric on P1(S) and that the infimum is attained, or equivalently,

that an optimal coupling (X,Y ) such that

d1(μ, ν) = E[‖X − Y‖1]

always exists; see, e.g. [25, Theorem 4.1] or [5, Lemma 8.1]. This optimal coupling, nonethe-
less, is not in general explicitly available. One noteworthy exception is when μ and ν are
probability measures on the real line, in which case we have

d1(μ, ν) =
∫ 1

0
|F−1(u)−G−1(u)| du =

∫ ∞

−∞
|F(x)−G(x)| dx,

whereF andG are the cumulative distribution functions ofμ and ν, respectively, and f−1(t) =
inf{x ∈ R : f (x) ≥ t} denotes the pseudo-inverse of f . It follows that the optimal coupling is
given by (X, Y ) = (F−1(U),G−1(U)) for U uniformly distributed in [0, 1].

Another important property of the Kantorovich–Rubinstein distance is that the convergence
in d1 to a limit μ ∈ P1(S) is equivalent to weak convergence plus convergence of the first
moments. Furthermore, it satisfies the useful duality formula

d1(μ, ν) = sup
‖ψ‖Lip≤1

{∫
S
ψ(x) dμ(x)−

∫
S
ψ(x) dν(x)

}
for all μ, ν ∈ P1(S),

where the supremum is taken over all Lipschitz continuous functionsψ : S → R with Lipschitz
constant 1; see [25, Remark 6.5].
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504 N. CHEN AND M. OLVERA-CRAVIOTO

4. Main results

This paper contains two sets of results; the first one provides explicit bounds for the
Kantorovich–Rubinstein distance between two versions of the processes {W(j) : j ≥ 0} (as
defined by (2)) constructed on weighted branching processes, respectively weighted branching
trees, using different generic branching vectors. These bounds are given in terms of the
Kantorovich–Rubinstein distance between the two generic branching vectors. The second set of
results apply the explicit bounds to a sequence of processes {W(n,j) : j ≥ 0} and {R(n,k) : k ≥ 0}
for n ≥ 1, in order to obtain the convergence in the Kantorovich–Rubinstein distance to the
special endogenous solution to (1) constructed on a limiting weighted branching process.

4.1. Bounds for the Kantorovich–Rubinstein distance

Let {W(j) : j ≥ 0} and {Ŵ (j) : j ≥ 0} be defined according to (2) on two different
weighted branching processes using the generic branching vectors (Q,N,C1, C2, . . . ) and
(Q̂, N̂, Ĉ1, Ĉ2, . . . ), respectively. As our result will show, it is enough to consider generic
branching vectors of the form (Q,B1, B2, . . . ) and (Q̂, B̂1, B̂2, . . . ), where Bi = Ci 1{N≥i}
and B̂i = Ĉi 1{N̂≥i} for all i ∈ N+. Let μ denote the probability measure of (Q,B1, B2, . . . )

and let μ̂ denote the probability measure of (Q̂, B̂1, B̂2, . . . ). Using S = R
∞, we assume

throughout the paper that
∫

R∞
‖x‖1 dμ(x) = E

[
|Q| +

∞∑
i=1

|Bi |
]
< ∞,

∫
R∞

‖x‖1 dμ̂(x) = E

[
|Q̂| +

∞∑
i=1

|B̂i |
]
< ∞.

(6)

To construct the two processes on the same probability space, let π denote any coupling ofμ
and μ̂, and let {(Qi, B(i,1), B(i,2), . . . , Q̂i, B̂(i,1), B̂(i,2), . . . )}i∈U be a sequence of i.i.d. random
vectors distributed according to π . Then, use the vectors {(Qi, B(i,1), B(i,2), . . . )}i∈U to
construct {W(j) : j ≥ 0}, as described in Section 2, and the vectors {(Q̂i, B̂(i,1), B̂(i,2), . . . )}i∈U
to construct {Ŵ (j) : j ≥ 0}. Our first result is stated below. We use the convention that∑b
i=a xi ≡ 0 if b < a, and the notation Eπ [·] to denote the expectation taken with respect to

the coupling π ; we also use x ∧ y and x ∨ y to denote the minimum and the maximum of x
and y, respectively, and x+ = max{0, x}.
Proposition 1. For any coupling π of μ and μ̂, and any j ≥ 0,

E[|Ŵ (j) −W(j)|] ≤
(
ρ̂j + E[|Q|]

j−1∑
t=0

ρt ρ̂j−1−t
)

E ,

where ρ = E[∑N
i=1 |Ci |], ρ̂ = E[∑N̂

i=1 |Ĉi |], and E = Eπ [|Q̂−Q| + ∑∞
i=1 |B̂i − Bi |].

We point out that the bound provided by Proposition 1 is also a bound for the Kantorovich–
Rubinstein distance between Ŵ (j) and W(j), and if we take π to be the optimal coupling of μ
and μ̂ then we have E = d1(μ̂, μ). It is also worth mentioning that if we let ν and ν̂ be the
probability measures of (Q,N,C1, C2, . . . ) and (Q̂, N̂, Ĉ1, Ĉ2, . . . ), respectively, and assume
that E[N + N̂ ] < ∞, then d1(μ, μ̂) can be small even if d1(ν, ν̂) is not. This is due to the
observation that, in general, large disagreements between Cr and Ĉr for values of r for which
P(N > r) and P(N̂ > r) are negligible do not affect d1(μ, μ̂), whereas they do adversely
affect d1(ν, ν̂).
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Coupling on weighted branching trees 505

Our next result provides a similar bound for the case when Ŵ (j) and W(j) are constructed
on weighted branching trees using the generic branching vectors (Q̂, N̂, Ĉ) and (Q,N,C),
respectively. As before, let ν̂ and ν denote the probability measures of (Q̂, N̂, Ĉ) and (Q,N,C).
We allow the coupling used for the root nodes to be different from all other nodes, i.e. the two
trees are constructed using the sequence of i.i.d. vectors {(Qi, Ci, Ni, Q̂i, Ĉi, N̂i)}i∈U,i �=∅

distributed according to a coupling π of ν and ν̂, while (Q∅, N∅, Q̂∅, N̂∅) is independent of
the previous sequence and is distributed according to a coupling π∗ of ν∗ and ν̂∗, where ν∗ is
the probability measure of (Q,N) and ν̂∗ is that of (Q̂, N̂). We have ignoredC∅ and Ĉ∅ since
they do not appear in the definitions of W(j) and Ŵ (j).

Proposition 2. For any coupling π of ν and ν̂ and any coupling π∗ of ν∗ and ν̂∗,

E[|Ŵ (0) −W(0)|] ≤ E∗

and for j ≥ 1,

E[|Ŵ (j) −W(j)|] ≤
(

E[N̂ ] ∨ E[N ]E[|CQ|]
ρ

)(j−1∑
t=0

ρ̂t ρj−1−t
)

E + E[|Q|]ρ̂j−1E∗,

where ρ = E[N |C|], ρ̂ = E[N̂ |Ĉ|], E∗ = Eπ∗ [|Q̂−Q| + |N̂ −N |], and

E = Eπ

[
|ĈQ̂− CQ| +

∞∑
i=1

|Ĉ 1{N̂≥i} −C 1{N≥i}|
]
.

4.2. Convergence to the special endogenous solution

Our second set of results considers a sequence of weighted branching processes (respectively,
weighted branching trees), each constructed using a generic branching vector having probability
measure νn, n ≥ 1. In other words, for weighted branching processes, νn is the probability
measure of a vector of the form (Q(n), N(n), C

(n)
1 , C

(n)
2 , . . . ), while for weighted branching

trees it corresponds to a vector of the form (Q(n), N(n), C(n)). On each of them we define the
processes {W(n,j) : j ≥ 0} and {R(n,k) : k ≥ 0} according to (2) and (3), and we are interested
in providing conditions under whichW(n,j) (suitably scaled) andR(n,k) will converge, as n, j, k
go to ∞, to the special endogenous solution of a linear SFPE of the form in (1).

The main conditions for the convergence we seek will be in terms of the sequence of
probability measures {μn}n≥1, where μn is the probability measure of the vector

(Q(n), C
(n)
1 1{N(n)≥1}, C

(n)
2 1{N(n)≥2}, . . . )

for weighted branching processes, and of

(C(n)Q(n), C(n) 1{N(n)≥1}, C(n) 1{N(n)≥2}, . . . )

for weighted branching trees.
In both cases, we assume that there exists a probability measureμ such that d1(μn, μ) → 0.

We point out that for a weighted branching process, μ is always the probability measure of a
generic branching vector, since each of the μn is. However, this is not necessarily the case for
a weighted branching tree, and we need to further assume that there exist probability measures
η1 on R and η2 on R × {0, 1}∞ such that∫

R∞
h(x)μ(dx) =

∫
R×{0,1}∞

∫
R

h(yx1, yx2, yx3, . . . )η1(dy)η2(dx)

Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/apr.2016.12
Downloaded from https://www.cambridge.org/core. The University of North Carolina Chapel Hill Libraries, on 09 Jan 2019 at 20:41:20, subject to the Cambridge

https://www.cambridge.org/core/terms
https://doi.org/10.1017/apr.2016.12
https://www.cambridge.org/core


506 N. CHEN AND M. OLVERA-CRAVIOTO

for all functions h : R
∞ → R. We can then identify η1 with the probability distribution

of C and η2 with the probability distribution of the vector (Q, 1{N≥1}, 1{N≥2}, . . . ), which
fully determines (Q,N). With this interpretation, the limiting measure μ defines a weighted
branching process with a generic branching vector of the form (Q,N,C1, C2, . . . ) with the
{Ci}i≥1 i.i.d. and independent of (Q,N); condition (6) implies that E[N ] < ∞.

We refer to the case where we analyze a sequence of weighted branching processes as
case 1, and to the case where we analyze a sequence of weighted branching trees as case 2. For
case 2, in addition to the measure μn defined above, we define ν∗

n to be the probability measure
of the vector (Q(n), N(n)) and ν∗ to be the probability measure of (Q,N). The symbol

d−→
denotes convergence in distribution and

d1→ denotes convergence in the Kantorovich–Rubinstein
distance.

Theorem 1. Define the processes {W(n,j) : j ≥ 0}, n ≥ 1, and {W(j) : j ≥ 0} according
to (2). Suppose that as n → ∞,

d1(μn, μ) → 0 (case 1) or d1(ν
∗
n, ν

∗)+ d1(μn, μ) → 0 (case 2).

Then, for any fixed j ∈ N,

W(n,j) d1→ W(j) as n → ∞.

Moreover, if Q(n) = Q ≡ 1 and C(n)j , Cj are nonnegative for all n and j , then for any jn ∈ N

such that jn → ∞ and

jnd1(μn, μ) → 0 (case 1) or d1(ν
∗
n, ν

∗)+ jnd1(μn, μ) → 0 (case 2) as n → ∞,

we have
W(n,jn)

ρ
jn
n

d−→ W ,
W(n,jn)

ρjn

d−→ W ,

where W is the a.s. limit of W(j)/ρj as j → ∞.

As pointed out in Section 2.1, W is the unique endogenous solution to the SFPE

W
d=

N∑
i=1

Ci

ρ
Wi ,

where the {Wi} are i.i.d. copies of W , independent of (N,C1, C2, . . . ). See [1], [16], and [18]
for conditions on when the random variable W , which satisfies E[W ] ≤ 1, is nontrivial, as
well as characterizations of its tail behavior. Furthermore, when E[W ] = 1 we can replace the
convergence in distribution with convergence in the Kantorovich–Rubinstein distance, i.e.

W(n,jn)

ρ
jn
n

d1→ W ,
W(n,jn)

ρjn

d1→ W as n → ∞.

We now give a similar result for the nonhomogeneous equation.

Theorem 2. Define the processes {R(n,k) : k ≥ 0}, n ≥ 1, and {R(k) : k ≥ 0} according to (3).
Suppose that as n → ∞,

d1(μn, μ) → 0 (case 1) or d1(ν
∗
n, ν

∗)+ d1(μn, μ) → 0 (case 2).

Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/apr.2016.12
Downloaded from https://www.cambridge.org/core. The University of North Carolina Chapel Hill Libraries, on 09 Jan 2019 at 20:41:20, subject to the Cambridge

https://www.cambridge.org/core/terms
https://doi.org/10.1017/apr.2016.12
https://www.cambridge.org/core


Coupling on weighted branching trees 507

Then, for any fixed k ∈ N,

R(n,k)
d1→ R(k) as n → ∞.

Moreover, if ρ < 1 then for any kn ∈ N such that kn → ∞ as n → ∞, we have

R(n,kn)
d1→ R as n → ∞,

where R = ∑∞
k=0

∑
i∈Ak�iQi is the a.s. limit of R(k) as k → ∞.

In the statement of the theorem, provided ρ < 1, R is the unique endogenous solution to the
SFPE

R
d=

N∑
i=1

CiRi +Q, (7)

where the {Ri} are i.i.d. copies of R, independent of (Q,N,C1, C2, . . . ). Moreover, the
asymptotic behavior of P(R > x) as x → ∞ can be described for several different assumptions
on the generic vector (Q,N,C1, C2, . . . ). We refer the reader to [15] and [20] for the precise
set of theorems.

Note that in case 1, the convergence ofR(n,k) as k → ∞ for a fixed n is guaranteed whenever
E[∑N(n)

i=1 |C(n)i |β ] < 1 for some 0 < β ≤ 1 (see [15, Lemma 4.1]), and its limit R(n) would be
the unique endogenous solution to

R(n)
d=
N(n)∑
i=1

C
(n)
i R

(n)
i +Q(n). (8)

For case 2, on the other hand, an adaptation of the proof of [15, Lemma 4.1] would show that
R(n,k) converges a.s. to

R(n) =
∞∑
j=0

W(n,j) as k → ∞

with R(n) finite a.s. provided E[N(n)|C(n)|β ] < 1 for some 0 < β ≤ 1. However, this random
variable R(n) would not necessarily have the interpretation of being a solution to (8).

We end this section with a result for the weighted branching tree setting that states that
d1(μn, μ) converges to 0 whenever d1(νn, ν) and the moments of Q(n)C(n) and N(n)C(n) do.

Lemma 1. For case 2, suppose that as n → ∞, d1(νn, ν) → 0,E[|C(n)Q(n)|] → E[|CQ|],
and E[|C(n)|N(n)] → E[|C|N ]. Then

d1(μn, μ) → 0 as n → ∞.

5. Applications

As mentioned in the introduction, our interest in analyzing the processes {Ŵ (j) : j ≥ 0} and
{R̂(k) : k ≥ 0} when they are constructed on a weighted branching tree, rather than a weighted
branching process, comes from applications to the analysis of random graphs and information
ranking algorithms. In this section we provide two examples in which an application of the
main results in Section 4 lead to the special endogenous solution to (1).
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508 N. CHEN AND M. OLVERA-CRAVIOTO

5.1. Ranking algorithms on a directed configuration network

Our first example is related to the analysis of ranking algorithms on directed graphs. In
particular, we are interested in studying the distribution of the ranks produced by spectral
ranking algorithms, e.g. Google’s Pagerank™, used to rank webpages on the World Wide Web.
More precisely, the recent work in [9] considers a sequence of random graphs constructed
according to the directed configuration model [8] and shows that the rank of a randomly chosen
node can be coupled with a random variable R(n,kn) (of the form in (3) and built on a weighted
branching tree) where the n refers to the number of nodes in the graph. An application of a
version of Theorem 2 then leads to the rank of a randomly chosen node having a representation
in terms of the special endogenous solution to (1), as defined in Section 2.1, as the number of
nodes in the graph grows to ∞.

Before stating the precise version of Theorem 2 that is needed in this application it will be
helpful to give some details about the configuration model. The configuration or pairing model
(see, e.g. [7] and [23]), produces a random graph from a given degree sequence by assigning to
each node a number of half-edges equal to its degree and then randomly pairing the half-edges
to form a graph. Similarly, the directed configuration model generates a directed graph from a
given bi-degree sequence (sequence of in-degrees and out-degrees). In both cases, the resulting
graph, conditional on it not having self-loops or multiple edges, is a graph uniformly chosen
at random from all simple graphs having that degree (bi-degree) sequence. We observe that
given the degree sequence(s), the randomness in the graph comes from the pairing process, so
it makes sense that in applications one often works on the conditional probability space, given
the degree sequence(s).

It is due to this last observation that in order to obtain the convergence of the rank of
a randomly chosen node on a directed configuration model one needs to apply Theorem 2
conditionally on the sigma-algebra generated by the bi-degree sequence. Other random graph
models, e.g. the generalized random graph [23], require conditioning on a ‘weight’ sequence.
Moreover, the analysis of problems related to the configuration model in general (directed or
undirected) often relies on a coupling with a weighted branching tree where the root node has
a different distribution, hence the need to further tailor the theorem.

In order to state a suitable theorem for the analysis of spectral algorithms on random graphs,
we first need to introduce some additional notation. We consider a sequence of sigma-algebras
generated by a finite set of random variables/vectors (e.g. the degree sequences). Next, for
each n ≥ 1, and conditionally on Fn, we construct a weighted branching tree using the generic
branching vector (Q(n), N(n), C(n)), whose (conditional) probability measure we denote by νn.
Moreover, we allow the root branching vector (Q(n)

∅
, N

(n)
∅
) to have a different (conditional)

distribution, say having a probability measure ν∗
n . In other words, the nth weighted branching

tree is constructed, conditionally on Fn, using the sequence of conditionally i.i.d. vectors
{(Q(n)

i , N
(n)
i , C

(n)
i )}i∈U,i �=∅ distributed according to νn, and (Q

(n)
∅
, N

(n)
∅
) is conditionally

independent of this sequence and is distributed according to ν∗
n . Note that unconditionally,

the νn and ν∗
n are random elements of P1(R

3) and P1(R
2), respectively (e.g., the empirical

measures constructed from the degree sequences).
In the statement of Theorem 4 below, we assume that ν and ν∗ are the probability measures

of the vectors (Q,N,C) and (Q∅, N∅), respectively, with C independent of (Q,N), i.e. the
limiting weighted branching tree is a delayed weighted branching process. The measures ν
and ν∗ are fixed elements of P1(R

3) and P1(R
2), respectively, and hence are independent

of Fn. The symbol
P−→ denotes convergence in probability.
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Theorem 3. Conditionally on Fn, define the processes {R(n,k) : k ≥ 0}, n ≥ 1, according
to (3). Similarly, define {R(k) : k ≥ 0}. Suppose that as n → ∞,

d1(ν
∗
n, ν

∗)+ d1(μn, μ)
P−→ 0.

Then, for any fixed k ∈ N,

R(n,k)
d−→ R(k) as n → ∞.

Moreover, if ρ = E[N ]E[|C|] < 1 then for any kn ∈ N such that kn → ∞ as n → ∞, we have

R(n,kn)
d−→ R as n → ∞,

where R = ∑∞
k=0

∑
i∈Ak�iQi is the a.s. limit of R(k) as k → ∞.

Remark 1. (i) Because we allow ν∗ to be different from ν, the random variable R appearing
in the limit can be written as

R =
N∅∑
i=1

CiRi +Q∅,

where the {Ri} are i.i.d. copies of the special endogenous solution R to (7), independent
of (Q∅, N∅, C1, C2, . . . ), and with the {Ci} i.i.d. and independent of (Q∅, N∅). In other
words, R is a linear combination of i.i.d. copies of the special endogenous solution to (7).

(ii) No restrictions need to be imposed on ν∗ besides
∫ ‖x‖1 dν∗(x) < ∞, since C∅ does not

appear in the definitions of W(j) and R(k).

(iii) An important observation is that we have replaced the convergence in the Kantorovich–
Rubinstein distance in Theorem 2 with weak convergence, this is due to the fact that the
proof of Theorem 3 requires that we apply Proposition 2 conditionally on Fn, which if done
directly starting with E[|W(n,j) −W(j)|] would lead to having to compute all the moments of
ρn = E[N(n)|C(n)| | Fn], which in general may not even be finite. Therefore, Proposition 2
needs to be used after having guaranteed that ρn is sufficiently close to ρ, hence the weaker
mode of convergence.

(iv) The previous remark also implies that if ρn ≤ c < 1 a.s. then the weak convergence in
Theorem 3 can be replaced by convergence in the Kantorovich–Rubinstein sense.

5.2. Analyzing the configuration model

Our second example is also related to the analysis of random graphs. As mentioned
earlier, when analyzing the properties of random graphs, e.g. connectivity, existence of a
giant component, typical distances, or phase transitions, one of the basic techniques consists
in coupling a ‘graph exploration process’ with a branching process. This is true for the
configuration model (directed or undirected) as well as for other random graph models such as
the Erdős–Rényi graph or the generalized random graph. In line with our previous example for
the analysis of ranking algorithms, we show an application of Theorem 1 that can be used for
analyzing the properties of the configuration model.

Consider an undirected graph with n nodes generated according to the configuration model.
In [24] the authors provide an asymptotic characterization, as n → ∞, of the hop count
(length of the shortest path) between two randomly chosen nodes in the graph. In particular,
they show that conditional on the two nodes belonging to the same component, this distance
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510 N. CHEN AND M. OLVERA-CRAVIOTO

grows logarithmically in n. The main step of the proof consists in coupling a breadth-first
exploration process, where starting from a randomly chosen node we sequentially uncover all
nodes at distance 1, then those at distance 2, etc. with a delayed branching process (Galton–
Watson process). This delayed branching process, as in our previous example, is constructed
conditionally on the sigma-algebra Fn generated by the degree sequence.

If we denote by {Z(n,j) : j ≥ 0} the number of individuals in the j th generation of the
coupled branching process (obtained by setting Q(n)

i ≡ C
(n)
i ≡ 1 for all i ∈ U in (2)) then the

goal is to show that Z(n,j)/(E[N(n) | Fn])j converges to a limit as n, j → ∞. The following
version of Theorem 1 provides such a limit; here νn denotes the random probability measure
of the conditionally i.i.d. random variables {N(n)

i }i∈U,i �=∅ and ν∗
n denotes that of N(n)

∅
.

Theorem 4. Suppose there exist probability measures ν and ν∗ such that

d1(νn, ν)
P−→ 0, d1(ν

∗
n, ν

∗) P−→ 0 as n → ∞.

Let {Z(n,j) : j ≥ 0}, n ≥ 1, be the (delayed) branching process defined by the sequence
{N(n)

i }i∈U , and let {Z(j) : j ≥ 0} be the one defined using {Ni}i∈U . Then, there exists a
coupling of {Z(n,j) : j ≥ 0} and {Z(j) : j ≥ 0} such that for any jn ∈ N satisfying

jn d1(νn, ν)
P−→ 0,

we have

max
1≤j≤jn

∣∣∣∣ Z
(n,j)

m∗
nm

j−1
n

− Z(j)

m∗mj−1

∣∣∣∣ P−→ 0, max
1≤j≤jn

|Z(n,j) − Z(j)|
mj−1

P−→ 0 as n → ∞,

where mn = E[N(n) | Fn],m∗
n = E[N(n)

∅
| Fn],m = E[N ], and m∗ = E[N∅].

In particular, Theorem 4 can be used to obtain

Z(n,jn)

m∗
nm

jn−1
n

d−→ W as n → ∞,

where W is the a.s. limit of the martingale Z(j)/(m∗mj−1) as j → ∞.
Our last result in this paper shows how large we can take jn in Theorem 4 when analyzing

the configuration model using a degree sequence {D1,D2, . . . , Dn} of i.i.d. random variables
having common probability mass functionf , a model used in [24] to analyze the typical distance
between nodes in the graph. In this context, Fn = σ(D1,D2, . . . , Dn),

ν∗
n({k}) = P(N

(n)
∅

= k | Fn) = 1

n

n∑
i=1

1{Di=k}, k = 0, 1, 2, . . . ,

and

νn({k}) = P(N
(n)
1 = k | Fn) =

n∑
i=1

Di

Ln
1{Di=k+1}, k = 0, 1, 2, . . .

with Ln = ∑n
j=1Dj . The measure νn corresponds to the so-called size-biased empirical

distribution. The limiting probability measures are given by

ν∗({k}) = f (k), ν({k}) = E[D 1{D=k+1}]
E[D] , k = 0, 1, 2, . . . ,

where D is distributed according to f .
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Lemma 2. Suppose that E[D2+ε] < ∞ for some ε > 0, then

nδ
′
d1(ν

∗
n, ν

∗) P−→ 0, nδd1(νn, ν)
P−→ 0 as n → ∞

for any 0 < δ′ < 1
2 and 0 < δ < min{ 1

2 , ε/(2 + ε)}.

6. Proofs

This last section contains the proofs of all the results presented throughout this paper. For
the reader’s convenience they are organized according to the section in which their statements
appear.

6.1. Bounds for the Kantorovich–Rubinstein distance

We first prove Proposition 1, which bounds the Kantorovich–Rubinstein distance of the
linear processes on two coupled weighted branching processes by the distance between their
generic branching vectors.

Proof of Proposition 1. Define E = Eπ [|Q̂−Q| + ∑∞
i=1 |B̂i − Bi |], where the vector

(Q,B1, B2, . . . , Q̂, B̂1, B̂2, . . . ) is distributed according to π . Recall that the weights �i

and �̂i follow the recursions

�(i,j) = �iB(i,j), �̂(i,j) = �̂iB̂(i,j)

with �∅ = �̂∅ = 1. Now note that for j = 0, we have

E[|Ŵ (0) −W(0)|] = E[|Q̂−Q|] ≤ E .

To analyze the expression for j ≥ 1, define for r ≥ 1,

W
(j−1)
r =

∑
(r,i)∈N

j
+
Q(r,i)�(r,i)

Br
, Ŵ

(j−1)
r =

∑
(r,i)∈N

j
+
Q̂(j,i)�̂(r,i)

B̂r
.

We then have

Ŵ (j) =
∞∑
r=1

B̂rŴ
(j−1)
r , W(j) =

∞∑
r=1

BrW
(j−1)
r .

Next, note that

E[|Ŵ (j) −W(j)|] ≤
∞∑
r=1

E[|B̂rŴ (j−1)
r − BrW

(j−1)
r |]

≤
∞∑
r=1

{E[|W(j−1)
r (B̂r − Br)| + |B̂r (Ŵ (j−1)

r −W
(j−1)
r )|]}

≤
∞∑
r=1

E[|B̂r − Br |]E[|W(j)
r |] +

∞∑
r=1

E[|B̂r |]E[|Ŵ (j)
r −W

(j)
r |]

≤ E[|W(j−1)|]E + ρ̂E[|Ŵ (j−1) −W(j−1)|],
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512 N. CHEN AND M. OLVERA-CRAVIOTO

where we used the independence of the root vectors and their offspring, the observation that the
random variables {W(j−1)

r }r≥1 are i.i.d. with the same distribution as W(j−1), and {(Ŵ (j−1)
r −

W
(j−1)
r )}r≥1 are i.i.d. with the same distribution as Ŵ (j−1) −W(j−1). Moreover,

E[|W(j−1)|] ≤ E[|Q|]
∑

i∈N
j−1
+

E[|�i |] = E[|Q|]ρj−1.

It follows that

E[|Ŵ (j) −W(j)|] ≤ E[|Q|]ρj−1E + ρ̂E[|Ŵ (j−1) −W(j−1)|] (after (j − 1) iterations)

≤
(
ρ̂j + E[|Q|]

j−1∑
t=0

ρt ρ̂j−1−t
)

E .

This completes the proof. �
Similarly we can prove an upper bound for weighted branching trees.

Proof of Proposition 2. We construct the processes Ŵ (j) andW(j) on two weighted branch-
ing trees using a coupled vector (Q∅, N∅, Q̂∅, N̂∅) for the root nodes ∅, distributed according
toπ∗, and a sequence of i.i.d. random vectors {(Qi, Ni, Ci, Q̂i, N̂i, Ĉi))}i∈U,i �=∅, independent
of (Q∅, N∅, Q̂∅, N̂∅), distributed according to π for all other nodes.

Next, for i ∈ N
k+, k ≥ 1, let B(0)i = CiQi, B̂

(0)
i = ĈiQ̂i, B

(j)

i = Ci 1{Ni≥i}, and B̂(j)i =
Ĉi 1{N̂i≥i} for j ≥ 1, and note that

�iQi = Qi

k∏
r=1

Ci | r 1{ir≤Ni | r−1} = 1{i1≤N∅}
k−1∏
r=1

B
(ir+1)

i | r B
(0)
i .

Similarly,

�̂iQ̂i = 1{i1≤N̂∅}
k−1∏
r=1

B̂
(ir+1)

i | r B̂
(0)
i ,

with the convention that
∏b
i=a xi ≡ 1 if b < a.

Let
E∗ = Eπ∗ [|Q̂−Q| + |N̂ −N |],

where (Q,N, Q̂, N̂) is distributed according to π∗, and

E = Eπ [
∞∑
i=0

|B̂(i) − B(i)|],

where (B(0), B(1), B(2), . . . , B̂(0), B̂(1), B̂(2), . . . ) is distributed according to π . It follows that

E[|Ŵ (0) −W(0)|] = Eπ∗ [|Q̂−Q|] ≤ E∗,

and for j ≥ 1,

E[|Ŵ (j) −W(j)|]

= E

[∣∣∣∣
∑
i∈N

j
+

1{i1≤N̂∅}
j−1∏
r=1

B̂
(ir+1)

i | r B̂
(0)
i −

∑
i∈N

j
+

1{i1≤N∅}
j−1∏
r=1

B
(ir+1)

i | r B
(0)
i

∣∣∣∣
]

Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/apr.2016.12
Downloaded from https://www.cambridge.org/core. The University of North Carolina Chapel Hill Libraries, on 09 Jan 2019 at 20:41:20, subject to the Cambridge

https://www.cambridge.org/core/terms
https://doi.org/10.1017/apr.2016.12
https://www.cambridge.org/core


Coupling on weighted branching trees 513

≤
∑
i∈N

j
+

E

[∣∣∣∣1{i1≤N̂∅}
j−1∏
r=1

B̂
(ir+1)

i | r (B̂
(0)
i − B

(0)
i )

∣∣∣∣
]

+
∑
i∈N

j
+

E

[∣∣∣∣(1{i1≤N̂∅} − 1{i1≤N∅})
j−1∏
r=1

B̂
(ir+1)

i | r B
(0)
i

∣∣∣∣
]

+
∑
i∈N

j
+

E

[∣∣∣∣1{i1≤N∅}
(j−1∏
r=1

B̂
(ir+1)

i | r −
j−1∏
r=1

B
(ir+1)

i | r
)
B
(0)
i

∣∣∣∣
]

=
∑
i∈N

j
+

P(N̂ ≥ i1)

j−1∏
r=1

E[|Ĉ| 1{N̂≥ir+1}]Eπ [|B̂(0) − B(0)|]

+
∑
i∈N

j
+

Eπ∗ [| 1{i1≤N̂} − 1{i1≤N} |]
j−1∏
r=1

E[|Ĉ| 1{N̂≥ir+1}]E[|CQ|]

+
∑
i∈N

j
+

P(N ≥ i1)E

[∣∣∣∣
j−1∏
r=1

B̂
(ir+1)

i | r −
j−1∏
r=1

B
(ir+1)

i | r

∣∣∣∣
]
E[|CQ|],

where we have used the independence among the generic branching vectors of the weighted
branching trees. Moreover,

∑
i∈N

j
+

P(N̂ ≥ i1)

j−1∏
r=1

E[|Ĉ| 1{N̂≥ir+1}] =
∞∑
i=1

P(N̂ ≥ i)

( ∞∑
k=1

E[|Ĉ| 1{N̂≥k}]
)j−1

= E[N̂ ]ρ̂j−1,

where ρ̂ = E[N̂ |Ĉ|]. Similarly,

∞∑
i=1

Eπ∗ [| 1{i≤N̂} − 1{i≤N} |] =
∞∑
i=1

Eπ∗ [1{N<i≤N̂} + 1{N̂<i≤N}] = Eπ∗ [|N̂ −N |].

It follows that

E[|Ŵ (j) −W(j)|]
≤ E[N̂ ]ρ̂j−1

Eπ [|B̂(0) − B(0)|] + E[|CQ|]ρ̂j−1
Eπ∗ [|N̂ −N |]

+ E[N ]E[|CQ|]
∑

(i2,i3,...,ij )∈N
j−1
+

E

[∣∣∣∣
j−1∏
r=1

B̂
(ir+1)

(1,i2,...,ir )
−
j−1∏
r=1

B
(ir+1)

(1,i2,...,ir )

∣∣∣∣
]
.

Now define aj = ∑
(i2,i3,...,ij )∈N

j−1
+

E[| ∏j−1
r=1 B̂

(ir+1)

(1,i2,...,ir )
− ∏j−1

r=1 B
(ir+1)

(1,i2,...,ir )
|] for j ≥ 2,
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and a1 = 0. It follows that, for j ≥ 2,

aj ≤
∑

(i2,i3,...,ij )∈N
j−1
+

E

[∣∣∣∣
j−2∏
r=1

B̂
(ir+1)

(1,i2,...,ir )
−
j−2∏
r=1

B
(ir+1)

(1,i2,...,ir )

∣∣∣∣|B̂(ij )(1,i2,...,ij−1)
|
]

+
∑

(i2,i3,...,ij )∈N
j−1
+

E

[∣∣∣∣
j−2∏
r=1

B
(ir+1)

(1,i2,...,ir )

∣∣∣∣|B̂(ij )(1,i2,...,ij−1)
− B

(ij )

(1,i2,...,ij−1)
|
]

= aj−1

∞∑
ij=1

E[|Ĉ| 1{N̂≥ij }]

+
∑

(i2,i3,...,ij )∈N
j−1
+

j−2∏
r=1

E[|C| 1{N≥ir+1}]Eπ [|B̂(ij ) − B(ij )|]

= ρ̂aj−1 + ρj−2
∞∑
i=1

Eπ [|B̂(i) − B(i)|],

where ρ = E[N |C|]. Iterating this recursion j − 2 times, we obtain

aj ≤ ρ̂j−1a1 +
j−2∑
t=0

ρ̂t ρj−2−t
∞∑
i=1

Eπ [|B̂(i) − B(i)|] =
j−2∑
t=0

ρ̂t ρj−2−t
∞∑
i=1

Eπ [|B̂(i) − B(i)|].

We conclude that, for j ≥ 1,

E[|Ŵ (j) −W(j)|] ≤ E[N̂ ]ρ̂j−1
Eπ [|B̂(0) − B(0)|] + E[|CQ|]ρ̂j−1Eπ∗ [|N̂ −N |]

+ 1{j≥2} E[N ]E[|CQ|]
j−2∑
t=0

ρ̂t ρj−2−t
∞∑
i=1

Eπ [|B̂(i) − B(i)|]

≤
(

E[N̂ ] ∨ E[N ]E[|CQ|]
ρ

)(j−1∑
t=0

ρ̂t ρj−1−t
)

E + E[|CQ|]ρ̂j−1E∗. �

6.2. Convergence to the special endogenous solution

We now proceed to prove the two main theorems of the paper, Theorems 1 and 2.

Proof of Theorem 1. We split the proof into two parts.
Case 1: weighted branching processes. Choose a coupling π ofμn andμ such that Eπ [|Q−

Q(n)| + ∑∞
j=1 |Bj − B

(n)
j |] = d1(μ,μn). If we construct both weighted branching processes

based on this optimal coupling, then by Proposition 1,

E[|W(n,j) −W(j)|] ≤
(
ρ
j
n + E[|Q|]

j−1∑
t=0

ρtρ
j−1−t
n

)
d1(μ,μn)

≤ (E[|Q| ∨ ρ)(j + 1)ρj−1
(

1 ∨ ρn

ρ

)j
d1(μ,μn).
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Coupling on weighted branching trees 515

For fixed j ≥ 1 note that |ρn − ρ| ≤ d1(μ,μn), and hence (1 ∨ (ρn/ρ))j → 1 as n → ∞,
which in turn implies that E[|W(n,j) −W(j)|] → 0.

Assume now Q(n) = Q ≡ 1, and {C(n)j , Cj } are nonnegative for all n, j ; suppose that
jn → ∞ and jnd1(μ,μn) → 0 as n → ∞. First, note that {W(j)/ρj } is a mean 1 nonnegative
martingale with respect to the filtration generated by Gj = σ((B(i,1), B(i,2), . . . ) : i ∈ N

r+, 0 ≤
r < j),G0 = σ(∅). Therefore,

E

[∣∣∣∣W
(n,jn)

ρ
jn
n

− W(jn)

ρjn

∣∣∣∣
]

≤ E

[
1

ρ
jn
n

|W(n,jn) −W(jn)|
]

+ E

[
W(jn)

ρjn

∣∣∣∣
(
ρ

ρn

)jn
− 1

∣∣∣∣
]

≤ (1 ∨ ρ)
ρ

(jn + 1)

(
ρ

ρn

)jn(
1 ∨ ρn

ρ

)jn
d1(μ,μn)+

∣∣∣∣
(
ρ

ρn

)jn
− 1

∣∣∣∣
≤ (1 ∨ ρ)

ρ
(jn + 1)ejn(ρ/ρn−1)+d1(μ,μn)+ jn

∣∣∣∣ ρρn − 1

∣∣∣∣e(jn−1)(ρ/ρn−1)+ ,

where in the last step we used the inequalities

(x ∨ 1)j ≤ ej (x−1)+ , |xj − 1| ≤ j |x − 1|e(j−1)(x−1)+ for all x > 0, j ∈ N. (9)

Since jnd1(μ,μn) → 0 as n → ∞, then so does jn|ρ/ρn − 1| → 0 as n → ∞, and we
conclude that the expected value converges to 0. Since by the martingale convergence theorem
W(jn)/ρjn → W a.s., then

W(n,jn)

ρ
jn
n

d−→ W as n → ∞.

If E[W ] = 1 then E[|W(jn)/ρjn − W |] → 0 and we can replace the convergence in distribution
to convergence in the Kantorovich–Rubinstein distance.

The last statement of the theorem for weighted branching processes follows from noting that

1

ρj
E[|W(n,j) −W(j)|] ≤

∣∣∣∣ 1

ρj
− 1

ρ
j
n

∣∣∣∣E[|W(n,j)|] + E

[∣∣∣∣W
(n,jn)

ρ
jn
n

− W(jn)

ρjn

∣∣∣∣
]

=
∣∣∣∣
(
ρ

ρn

)j
− 1

∣∣∣∣ + E

[∣∣∣∣W
(n,jn)

ρ
jn
n

− W(jn)

ρjn

∣∣∣∣
]
,

which were already shown to converge to 0 for all 0 ≤ j ≤ jn. This completes the proof of
case 1.

Case 2: weighted branching trees. Construct versions of the processes {W(n,j) : j ≥ 0} and
{W(j) : j ≥ 0} using a sequence of coupled vectors {(Q(n)

i , N
(n)
i , C

(n)
i ,Qi, Ni, Ci)}i∈U,i �=∅

according to the coupling π satisfying

d1(μn, μ) = Eπ

[
|C(n)Q(n) − CQ| +

∞∑
i=1

|C(n) 1{N(n)≥i} −C 1{N≥i} |
]
.

Let the root vector (Q(n)
∅
, N

(n)
∅
,Q∅, N∅) be distributed according to π∗, where d1(ν

∗
n, ν

∗) =
Eπ∗ [|Q(n) −Q| + |N(n) −N |], and be independent of all other nodes.
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516 N. CHEN AND M. OLVERA-CRAVIOTO

By Proposition 2, we have E[|W(n,0) −W(0)|] ≤ d1(ν
∗
n, ν

∗) and

E[|W(n,j) −W(j)|] ≤ Kj(ρn ∨ ρ)j−1d1(μn, μ)+Kρ
j−1
n d1(ν

∗
n, ν

∗), j ≥ 1

with K = max{E[N(n)],E[|Q|]}. Note that

|ρn − ρ| =
∣∣∣∣

∞∑
i=1

E[C(n) 1{N(n)≥i} −C 1{N≥i}]
∣∣∣∣ ≤ d1(μn, μ).

The result for fixed j follows immediately.
Assume now that Q(n) = Q = 1 and {C(n), C} are nonnegative, and recall that C is

independent of (Q,N), and therefore μ defines a weighted branching process. This in turn
implies that {W(j)/ρj } is a nonnegative martingale with respect to the filtration generated by
Hj = σ((Ni, C(i,1), . . . , C(i,Ni )) : i ∈ Ar, 0 ≤ r < j), H0 = σ(∅). It follows that

E

[∣∣∣∣W
(n,jn)

ρ
jn
n

− W(jn)

ρjn

∣∣∣∣
]

≤ E[|W(n,jn) −W(jn)|] 1

ρ
jn
n

+
∣∣∣∣
(
ρ

ρn

)jn
− 1

∣∣∣∣
≤ Kjn

(
ρ ∨ ρn
ρn

)jn
d1(μn, μ)+ K

ρn
d1(ν

∗
n, ν

∗)+
∣∣∣∣
(
ρ

ρn

)jn
− 1

∣∣∣∣
≤ Kjnejn(ρ/ρn−1)+d1(μn, μ)+ K

ρn
d1(ν

∗
n, ν

∗)+ jn

∣∣∣∣ ρρn − 1

∣∣∣∣e(jn−1)(ρ/ρn−1)+ ,

where in the last step we used the inequalities in (9). This last expression converges to 0 since
jnd1(μn, μ) → 0 as n → ∞.

The proof of the last statement is identical to that of case 1 and is therefore omitted. �
We now proceed to the nonhomogeneous case.

Proof of Theorem 2. Again, we split the proof into two parts.
Case 1: weighted branching processes. The result for fixed k follows from Theorem 2, since

|R(n,k) − R(k)| =
∣∣∣∣
k∑
j=0

(W(n,j) −W(j))

∣∣∣∣ ≤
k∑
j=0

|W(n,j) −W(j)|.

If, in addition, we have ρ < 1 then, by Proposition 1 (using the optimal coupling),

E[|R(n,kn) − R(kn)|] ≤
kn∑
j=0

E[|W(n,j) −W(j)|]

≤
kn∑
j=0

(
ρ
j
n + E[|Q|]

j−1∑
t=0

ρtρ
j−1−t
n

)
d1(μn, μ).

Note that since |ρn − ρ| ≤ d1(μn, μ) then for any ρ < a < 1, we have ρn < a for all
sufficiently large n. In this case

E[|R(n,kn) − R(kn)|] ≤
∞∑
j=0

(aj + E[|Q|]jaj−1)d1(μn, μ) → 0 as n → ∞
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Coupling on weighted branching trees 517

for any kn ≥ 1. Since we also have

E[|R(kn) − R|] = E

[∣∣∣∣
∞∑

j=kn+1

W(j)

∣∣∣∣
]

≤
∞∑

j=kn+1

E[|Q|]ρj = E[|Q|]ρkn+1

1 − ρ
,

then for any kn → ∞,

R(n,kn)
d1→ R as n → ∞.

Case 2: weighted branching trees. The proof of the result for fixed k follows from Theorem 1
as before. For kn and ρ < 1, we use Proposition 2 (using the optimal couplings π∗ and π ) to
obtain

E[|R(n,kn) − R(kn)|] ≤
kn∑
j=0

E[|W(n,j) −W(j)|]

≤ d1(ν
∗
n, ν

∗)+K

kn∑
j=1

(j−1∑
t=0

ρtnρ
j−1−t d1(μn, μ)+ ρ

j−1
n d1(ν

∗
n, ν

∗)
)

with K = max{E[N(n)],E[|Q|]}. Using the same arguments from case 1 note that for any
ρ < a < 1 and sufficiently large n,

E[|R(n,kn) − R(kn)|] ≤ d1(ν
∗
n, ν

∗)+K

∞∑
j=1

(jaj−1d1(μn, μ)+ aj−1d1(ν
∗
n, ν

∗)),

which converges to 0 as n → ∞ for any kn ≥ 1. The rest of proof is the same as that of case 1
and is therefore omitted. �

The last result we need to prove in this section is Lemma 1.

Proof of Lemma 1. From the definition of the Kantorovich–Rubinstein metric and the fact
that the infimum is always attained (see, e.g. [25, Theorem 4.1]), there exists a coupling π of
(N(n),Q(n), C(n), N,Q,C) such that

d1(νn, ν) = Eπ [|Q(n) −Q| + |N(n) −N | + |C(n) − C|]. (10)

Next, define the vectors

Yn = C(n)(Q(n), 1{N(n)≥1}, 1{N(n)≥2}, . . . ), Y = C(Q, 1{N≥1}, 1{N≥2}, . . . ).

We will first show that ‖Yn − Y‖1
P−→ 0 as n → ∞. To this end, let (Q̂, N̂, Ĉ) =

(Q(n), N(n), C(n)) to simplify the notation and defineXn = ‖(N(n),Q(n), C(n))−(N,Q,C)‖1.
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518 N. CHEN AND M. OLVERA-CRAVIOTO

Note that (10) implies that Xn → 0 in mean, and therefore in probability. Now note that

‖Yn − Y‖1

= |Q̂Ĉ −QC| +
∞∑
i=1

|Ĉ 1{N̂≥i} −C 1{N≥i}|

= |Q̂Ĉ −QC| +
∞∑
i=1

(|Ĉ − C| 1{i≤N̂∧N} +|Ĉ| 1{N<i≤N̂} +|C| 1{N̂<i≤N})

= |Q̂Ĉ −QC| + |Ĉ − C|(N̂ ∧N)+ |Ĉ|(N̂ −N)+ + |C|(N − N̂)+

≤ |Ĉ||Q̂−Q| + |Q||Ĉ − C| + |Ĉ − C|(N̂ ∧N)+ |Ĉ|(N̂ −N)+ + |C|(N − N̂)+

≤ (2|C(n)| + |Q| +N + |C|)Xn
P−→ 0 as n → ∞

by the Converging Together Lemma. It remains to show that ‖Yn − Y‖1 → 0 in mean.
By the triangle inequality, we have

Qn � |‖Yn‖1 − ‖Y‖1| ≤ ‖Yn − Y‖1
P−→ 0 as n → ∞.

Also, by assumption,

E[‖Yn‖1] = E

[
|Q̂Ĉ| +

∞∑
i=1

|Ĉ| 1{N̂≥i}

]

= E[|Q̂Ĉ| + |Ĉ|N̂ ]
→ E[|CQ| + |C|N ]
= E[‖Y‖1] as n → ∞,

and therefore E[Qn] → 0; see, e.g. [10, Theorem 5.5.2]. Now note that since ‖Yn − Y‖1 ≤
‖Yn‖1 + ‖Y‖1 ≤ Qn + 2‖Y‖1, we have

E[‖Yn − Y‖1] ≤ E[‖Yn − Y‖1 1{Qn≤1}] + E[Qn] + 2E[‖Y‖1 1{Qn>1}],
where ‖Yn − Y‖11{Qn≤1} and ‖Y‖1 1{Qn>1} are uniformly integrable by [27, Theorem 13.3],
and hence

lim
n→∞ E[‖Yn − Y‖1 1{Qn≤1}] = lim

n→∞ E[‖Y‖1 1{Qn>1}] = 0. �

6.3. Applications

In this last section we prove the theorems regarding our applications to the analysis of
information ranking algorithms and random graphs.

Proof of Theorem 3. By applying the same steps from the proof of Theorem 2 conditionally
on the sigma-algebra Fn (with ν∗

n the probability distribution of the root vector, which is allowed
to be different), we obtain

E[|R(n,k) − R(k)| | Fn] ≤
k∑
j=0

E[|W(n,j) −W(j)| | Fn]

≤ d1(ν
∗
n, ν

∗)+Kn

k∑
j=1

(j−1∑
t=0

ρtnρ
j−1−t d1(μn, μ)+ ρ

j−1
n d1(ν

∗
n, ν

∗)
)
,
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Coupling on weighted branching trees 519

where Kn = max{E[N(n)
∅

| Fn],E[|Q|]}. Next, for any ε > 0 define the event An,ε =
{d1(ν

∗
n, ν

∗)+d1(μn, μ) ≤ ε}. Recall thatρn≤ ρ+d1(μn, μ) and note thatKn≤ max{E[N∅]+
d1(ν

∗
n, ν

∗),E[|Q|]}. The result for fixed k is obtained by first conditioning on the event An,ε,
as will be done for the case of kn → ∞ below, and therefore we omit the details.

For kn → ∞ and ρ < 1, choose 0 < ε ≤ (1 − ρ)/2 and define An,ε as above; set
K = max{E[N∅] + ε,E[|CQ|]}. Then apply Markov’s inequality conditionally to obtain for
any δ > 0,

P(|R(n,kn) − R(kn)| > δ) ≤ P(|R(n,kn) − R(kn)| > δ, An,ε)+ P(Acn,ε)

≤ δ−1
E[1{An,ε} E[|R(n,kn) − R(kn)| | Fn]] + P(Acn,ε)

≤ δ−1
E

[
1{An,ε}

{
d1(ν

∗
n, ν

∗)+Kn

∞∑
j=1

(1 − ε)j−1d1(ν
∗
n, ν

∗)
}]

+ δ−1
E

[
1{An,ε}Kn

∞∑
j=1

j (1 − ε)j−1d1(μn, μ)

]
+ P(Acn,ε)

≤ δ−1
(

1 ∨ K

ε2

)
E[d1(ν

∗
n, ν

∗) ∧ ε + d1(μn, μ) ∧ ε] + P(Acn,ε).

The assumption that d1(ν
∗
n, ν

∗)+ d1(μn, μ)
P−→ 0 as n → ∞ and the bounded convergence

theorem show that |R(n,kn) − R(kn)| P−→ 0. This combined with the observation that |R(kn) −
R| → 0 a.s. completes the proof. �

We now prove the theorem for the analysis of the configuration model.

Proof of Theorem 4. Let Fn(k) = P(N ≤ k | Fn), Gn(k) = P(N∅ ≤ k | Fn), F(k) =
P(N ≤ k), andG(k) = P(N∅ ≤ k). Let {Ui}i∈U be a sequence of i.i.d. uniform (0, 1) random
variables, independent ofFn. Construct the two trees using the coupled vectors {(N(n)

i , Ni)}i∈U ,
where

(N
(n)
∅
, N∅) = (G−1

n (U∅),G
−1(U∅)), (N

(n)
i , Ni) = (F−1

n (Ui), F
−1(Ui)) for i �= ∅,

and f−1(t) = inf{x ∈ R : f (x) ≥ t}. These are the optimal couplings for which d1(ν
∗
n, ν

∗)
and d1(νn, ν) are achieved.

Next, by adapting Proposition 2 to allow ν∗
n to be different, we obtain, for j ≥ 1,

E[|Z(n,j) − Z(j)| | Fn] ≤ m
j−1
n d1(ν

∗
n, ν

∗)+ 1{j≥2}m∗
j−2∑
t=0

mtnm
j−2−t d1(νn, ν),

where m = E[N ], mn = E[N(n) | Fn], m∗ = E[N∅], and m∗
n = E[N(n)

∅
| Fn].

Note that M(n,j) = Z(n,j)/(m∗
nm

j−1
n )− Z(j)/(m∗mj−1) for j ≥ 1 is a martingale with

respect to the filtration Gj = σ(N
(n)
i , Ni : i ∈ N

s , 0 ≤ s ≤ j − 1), conditionally on Fn. Let
An,δ = {d1(ν

∗
n, ν

∗) + jnd1(νn, ν) ≤ δ} and note that by assumption, P(An,δ) → 0 for any
δ > 0. Now let ε > 0 and use Doob’s maximal inequality to obtain

P

(
max

1≤j≤jn
|M(n,j)| > ε,An,δ

)
≤ 1

ε
E[1{An,δ} E[|M(n,jn)| | Fn]].

Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/apr.2016.12
Downloaded from https://www.cambridge.org/core. The University of North Carolina Chapel Hill Libraries, on 09 Jan 2019 at 20:41:20, subject to the Cambridge

https://www.cambridge.org/core/terms
https://doi.org/10.1017/apr.2016.12
https://www.cambridge.org/core
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To bound this last expectation note that for any j ≥ 1,

E[|M(n,j)| | Fn]

≤ E

[
1

m∗mj−1 |Z(n,j) − Z(j)| +
∣∣∣∣m

∗
nm

j−1
n

m∗mj−1 − 1

∣∣∣∣ Z
(n,j)

m∗
nm

j−1
n

∣∣∣∣ Fn

]

= 1

m∗mj−1 E[|Z(n,j) − Z(j)| | Fn] +
∣∣∣∣m

∗
nm

j−1
n

m∗mj−1 − 1

∣∣∣∣
≤ 1

m∗

(
mn

m

)j−1

d1(ν
∗
n, ν

∗)+ 1{j≥2}
1

m

j−2∑
t=0

(
mn

m

)t
d1(νn, ν)+

∣∣∣∣m
∗
nm

j−1
n

m∗mj−1 − 1

∣∣∣∣

≤ 1

m ∧m∗

(
m ∨mn
m

)j−1

(d1(ν
∗
n, ν

∗)+ jd1(νn, ν))+
∣∣∣∣m

∗
nm

j−1
n

m∗mj−1 − 1

∣∣∣∣.
Moreover, by (9) it follows that for 1 ≤ j ≤ jn and on the event An,δ ,(

m ∨mn
m

)j−1

≤ e(j−1)(mn/m−1)+ ≤ e(j−1)d1(νn,ν)/m ≤ eδ/m

and ∣∣∣∣m
∗
nm

j−1
n

m∗mj−1 − 1

∣∣∣∣ ≤ m∗
n

m∗

∣∣∣∣
(
mn

m

)j−1

− 1

∣∣∣∣ +
∣∣∣∣m

∗
n

m∗ − 1

∣∣∣∣
≤ m∗

n

m∗ (j − 1)

∣∣∣∣mnm − 1

∣∣∣∣e(j−2)+(mn/m−1)+ +
∣∣∣∣m

∗
n

m∗ − 1

∣∣∣∣
≤ (m∗ + δ)eδ/m

m∗m
(j − 1)d1(νn, ν)+ 1

m∗ d1(ν
∗
n, ν

∗).

It follows that on the event An,δ ,

E[|M(n,jn)| | Fn] ≤
(

eδ/m

m ∧m∗ + 1

m∗

)
d1(ν

∗
n, ν

∗)

+
(

eδ/m

m ∧m∗ + (m∗ + δ)eδ/m

m∗m

)
jnd1(νn, ν).

Hence,

P

(
max

1≤j≤jn
|M(n,j)| > ε,An,δ

)
≤ K

ε
E[1{An,δ}(d1(ν

∗
n, ν

∗)+ jnd1(νn, ν))]

for some constantK = K(δ) < ∞. Since d1(ν
∗
n, ν

∗)+ jnd1(νn, ν)
P−→0 as n → ∞, we obtain,

using the bounded convergence theorem, that

max
1≤j≤jn

|M(n,j)| P−→ 0 as n → ∞. (11)

For the second statement of the theorem note that for any j ≥ 1,

|Z(n,j) − Z(j)|
mj−1 ≤ m∗|M(n,j)| +m∗

∣∣∣∣m
∗
nm

j−1
n

m∗mj−1 − 1

∣∣∣∣X(n,j),
where X(n,j) = Z(n,j)/(m∗

nm
j−1
n ) is a mean 1 nonnegative martingale conditionally on Fn.
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By (11), it only remains to show that max1≤j≤jn |m∗
nm

j−1
n /m∗mj−1 −1|X(n,j) P−→ 0 as n → ∞.

To this end, note that for An,δ as above and some constant H = H(δ) < ∞,

P

(
max

1≤j≤jn

∣∣∣∣m
∗
nm

j−1
n

m∗mj−1
n

− 1

∣∣∣∣X(j) > ε,An,δ

)

≤ P

(
H(jnd1(νn, ν)+ d1(ν

∗
n, ν

∗)) max
1≤j≤jn

X(n,j) > ε, An,δ

)

≤ H

ε
E[1{An,δ}(jnd1(νn, ν)+ d1(ν

∗
n, ν

∗))E[X(n,jn) | Fn]]

= H

ε
E[1{An,δ}(jnd1(νn, ν)+ d1(ν

∗
n, ν

∗))]
→ 0 as n → ∞,

where in the second step we used Doob’s maximal inequality conditionally on Fn. This
completes the proof. �

The last proof verifies the conditions of Theorem 4 for the size-biased empirical distribution.

Proof of Lemma 2. To analyze d1(ν
∗
n, ν

∗) define F(k) = ∑k
i=0 f (i) and let Fn(k) denote

the empirical distribution function of F . Then

d1(ν
∗
n, ν

∗) =
∞∑
k=0

|Fn(k)− F(k)| =
∞∑
k=0

∣∣∣∣1

n

n∑
i=1

1{Di>k} −P(D > k)

∣∣∣∣ = 1

n

∞∑
k=0

|S∗
n(k)|,

where S∗
n(k) = Yk,1 + · · · + Yk,n and Yk,i = 1{Di>k} − P(D > k). Hence, we need to show

that
1

n1−δ′
∞∑
k=0

|S∗
n(k)| P−→ 0 as n → ∞

for any 0 < δ′ < 1
2 . This follows from noting that, for any ε > 0,

P

( ∞∑
k=0

|S∗
n(k)| > εn1−δ′

)
≤ 1

εn1−δ′
∞∑
k=0

E[|S∗
n(k)|]

≤ 1

εn1−δ′
∞∑
k=0

(E[(S∗
n(k))

2])1/2

= 1

εn1−δ′
∞∑
k=0

(n var(Yk,1)])1/2

≤ 1

εn1/2−δ′
∞∑
k=0

(P(D > k))1/2

≤ 1

εn1/2−δ′
(

1 +
∞∑
k=1

(
E[D2+ε]
k2+ε

)1/2)

→ 0 as n → ∞,

where in the second inequality we used the monotonicity of the Lp-norm and in the last one
Markov’s inequality.
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Similarly, if we let

Gn(k) =
n∑
i=1

Di

Ln
1{Di≤k+1} and G(k) = E[D 1{D≤k+1}]

E[D] for k = 0, 1, 2, . . . ,

then

d1(νn, ν) =
∞∑
k=0

|Gn(k)−G(k)|

=
∞∑
k=0

∣∣∣∣
n∑
i=1

Di

Ln
1{Di>k+1} −E[D 1{D>k+1}]

E[D]
∣∣∣∣

≤
∞∑
k=0

∣∣∣∣
n∑
i=1

Di 1{Di>k+1}
(

1

Ln
− 1

nE[D]
)∣∣∣∣

+ 1

E[D]
∞∑
k=0

∣∣∣∣1

n

n∑
i=1

Di 1{Di>k+1} −E[D 1{D>k+1}]
∣∣∣∣

≤ |nE[D] − Ln|
Ln

1

nE[D]
∞∑
k=0

n∑
i=1

Di 1{Di>k+1}

+ 1

nE[D]
∞∑
k=0

∣∣∣∣
n∑
i=1

(Di 1{Di>k+1} −E[D 1{D>k+1}])
∣∣∣∣

= |nE[D] − Ln|
n

n

Ln

1

nE[D]
n∑
i=1

Di(Di − 1)+ + 1

nE[D]
∞∑
k=0

|Sn(k)|,

where Sn(k) = Xk,1 + · · ·+Xk,n andXk,i = Di1{Di>k+1} −E[D 1{D>k+1}]. By the weak law
of large numbers

n

Ln

1

nE[D]
n∑
i=1

Di(Di − 1)+ P−→ E[D(D − 1)+]
(E[D])2 as n → ∞,

therefore it suffices to show that

|nE[D] − Ln|
n1−δ

P−→ 0 and
1

n1−δ
∞∑
k=0

|Sn(k)| P−→ 0 for 0 < δ < min

{
1

2
,

ε

2 + ε

}
.

Since E[D2+ε] < ∞, the Marcinkiewicz–Zygmund strong law gives

(nE[D] − Ln)

n1/p = 1

n1/p

n∑
i=1

(Di − E[D]) → 0 a.s. as n → ∞

for any 1 ≤ p < 2, in particular, for 1/p = 1 − δ. For the limit involving Sn(k) let
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an = �n1/(2+ε)� and follow the same steps used to analyze S∗
n(k) to obtain

P

( ∞∑
k=0

|Sn(k)| > εn1−δ
)

≤ 1

εn1−δ
an−1∑
k=0

(E[(Sn(k))2])1/2 + 1

εn1−δ
∞∑
k=an

E[|Sn(k)|]

≤ 1

εn1/2−δ
an−1∑
k=0

(var(Xk,1))
1/2 + nδ

ε

∞∑
k=an

E[|Xk,1|]

≤ 1

εn1/2−δ
an−1∑
k=0

(E[D2 1{D>k+1}])1/2 + nδ

ε

∞∑
k=an

2E[D 1{D>k+1}].

Using the inequality

E[D2+ε] ≥ E[D2+ε 1{D>r}] ≥ r2+ε−t
E[Dt 1{D>r}] for any r ≥ 1, (12)

and for any t ∈ [0, 2 + ε], we obtain

P

( ∞∑
k=0

|Sn(k)| > εn1−δ
)

= O

(
1

n1/2−δ
an−1∑
k=0

1

(k + 1)ε/2
+ nδ

∞∑
k=an

1

(k + 1)1+ε

)

= O

(
a

1−ε/2
n 1{ε �=2} +(log an) 1{ε=2}

n1/2−δ + nδa−ε
n

)

= O(nδ−ε/(2+ε) + nδ−1/2(log n) 1{ε=2}) as n → ∞,

which converges to 0 for δ < min{ 1
2 , ε/(2 + ε)}. �
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