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Abstract

We study a family of directed random graphs whose arcs are sampled independently of each
other, and are present in the graph with a probability that depends on the attributes of the
vertices involved. In particular, this family of models includes as special cases the directed
versions of the Erdés-Rényi model, graphs with given expected degrees, the generalized random
graph, and the Poissonian random graph. We establish a phase transition for the existence
of a giant strongly connected component and provide some other basic properties, including
the limiting joint distribution of the degrees and the mean number of arcs. In particular, we
show that by choosing the joint distribution of the vertex attributes according to a multivariate
regularly varying distribution, one can obtain scale-free graphs with arbitrary in-degree/out-
degree dependence.
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1 Introduction

Complex networks appear in essentially all branches of science and engineering, and since the
pioneering work of Erdds and Rényi in the early 1960s [13, 14], people from various fields have
used random graphs to model, explain and predict some of the properties commonly observed in
real-world networks. Until the last decade or so, most of the work had been mainly focused on
the study of undirected graphs, however, some important networks, such as the World Wide Web,
Twitter, and ResearchGate, to name a few, are directed. The present paper describes a framework
for analyzing a large class of directed random graphs, which includes as special cases the directed
versions of some of the most popular undirected random graph models.

Specifically, we study directed random graphs where the presence or absence of an arc is independent
of all other arcs. This independence among arcs is the basis of the classical Erdés-Rényi model
[13, 14], where the presence of an edge is determined by the flip of coin, with all possible edges
having the same probability of being present. However, it is well-known that the Erdds-Rényi
model tends to produce very homogeneous graphs, that is, where all the vertices have close to
the same number of neighbors, a property that is almost never observed in real-world networks.
In the undirected setting, a number of models have been proposed to address this problem while



preserving the independence among edges. Some of the best known models include the Chung-
Lu model [8, 9, 10, 23], the generalized random graph [6, 5, 16], and the Norros-Reittu model or
Poissonian random graph [26, 5, 34]. In the undirected case, all of these models were simultaneously
studied in [5] under a broader class of graphs, which we will refer to as kernel-based models. In all
of these models the inhomogeneity of the degrees is accomplished by assigning to each vertex a type,
which is used to make the edge probabilities different for each pair of vertices. From a modeling
perspective, the types correspond to vertex attributes that influence how likely a vertex is to have
neighbors, and inhomogeneity among the types translates into inhomogeneous degrees.

Our proposed family of directed random graphs, which we will refer to as inhomogeneous random
digraphs, provides a uniform treatment of essentially any model where arcs are present indepen-
dently of each other, in the same spirit as the work in [5] written for the undirected case. The main
results in this paper establish some of the basic properties studied on random graphs, including
the expected number of arcs, the joint distribution of the in-degree and out-degree, and the phase
transition for the size of the largest strongly connected component. We pay special attention to
the so-called scale-free property, which states that the tail degree distribution(s) decay according
to a power law. Since many real-world directed complex networks exhibit the scale-free property
in either their in-degrees, their out-degrees, or both, we provide a theorem stating how the family
of random directed graphs studied here can be used to model such networks. Our main result on
the connectivity properties of the graphs produced by our model shows that there exists a phase
transition, determined by the types, after which the largest strongly connected component contains
(with high probability) a positive fraction of all the vertices in the graph, i.e., the graph contains
a “giant” strongly connected component.

That the undirected models mentioned above satisfy these basic properties (e.g., scale-free degree
distribution, existence of a giant connected component, etc.) constitutes a series of classical results
within the random graph literature. Closely related to the results presented here for directed
graphs, are the existence of a giant strongly connected component and giant weak-component in
the directed configuration model [11, 18, 19], the existence of a giant strongly-connected component
in the deterministic directed kernel model with a finite number of types [3], the scale-free property
on a directed preferential attachment model [28, 31], and the limiting degree distributions in the
directed configuration model [7]'. From a computational point of view, the work in [33] provides
numerical algorithms to identify secondary structures on directed graphs. Our present work includes
as a special case the main theorem in [3] and extends it to a larger family of directed random graphs,
and it also compiles several results for the number of arcs and the joint distribution of the degrees.
It is also worth pointing out that the directed nature of our framework introduces some non-trivial
challenges that are not present in the undirected setting, which is the reason we chose to provide a
different approach from the one used in [5] for establishing some of our main results. We refer the
reader to Section 3.3 for more details on these challenges and what they imply.

The paper is organized as follows. In Section 2 we specify a class of directed random graphs via
their arc probabilities, and explain how the models mentioned above fit into this framework. In
Section 3 we provide our main results on the basic properties of the graphs produced by our model,
and in Section 4 we give all the proofs.

!Neither the configuration model nor the preferential attachment model have independent arcs, and therefore fall
outside the scope of this paper.



2 The Model

As mentioned in the introduction, we study directed random graphs with independent arcs. Since
we are particularly interested in graphs with inhomogeneous degrees, each vertex in the graph will
be assigned a type, which will determine how large its in-degree and out-degree are likely to be. In
applications, the type of a vertex can also be used to model other vertex attributes not directly
related to its degrees. We will assume that the types take values in a separable metric space S,
which we will refer to as the “type space”.

In order to describe our family of directed random graphs, we start by defining the type sequence
{xgn), cel xgln)}, where Xgn) denotes the type of vertex i in a graph on the vertex set [n] := {1,...,n}.
Note that, depending on how we construct the type sequence, it is possible for xgn) to be different
from xgm) for n # m. Define G, (k(1 4+ ¢,)) to be the graph on the vertex set [n] whose arc
probabilities are given by

7

(m) ()
K(x; 7, X; 2 (n o
) = (W(l + on(x, x| )))> A,  1<i#j<n, (2.1)

where & is a nonnegative function on § X §,

on(x,y) = (n, {X](Cn) 1<k< n},x,y) > —1 for all x,y € S,

and x Ay = min{z,y} (zVy = max{z,y}). In other words, pl(-;-l) denotes the probability that there
is an arc from vertex i to vertex j in G, (x(1+4y)). The presence or absence of arc (i, j) is assumed
to be independent of all other arcs. Note that the function ¢, (x,y) may depend on n, on the types
of the two vertices involved, or on the entire type sequence; however, to simplify the notation, we
emphasize only the arguments (x,y) of the two types involved. Following the terminology used
in [5] and [3], we will refer to x as the kernel of the graph. Note that we have decoupled the
dependence on n and on the type sequence by including it in the term ¢, (x,y), which implies that

with respect to the notation used in [5], k,(x,y) there corresponds to x(x,y)(1 + ¢,(x,y)) here.

Throughout the paper, we will refer to any directed random graph generated through our model
as an inhomogeneous random digraph (IRD).

We end this section by explaining how the directed versions of the Erdés-Rényi graph [13, 14, 15, 4],
the Chung-Lu (or “given expected degrees”) model [8, 9, 10, 23], the generalized random graph
[6, 5, 16], and the Norros-Reittu model (or “Poissonian random graph”) [26, 5, 34], as well as the
directed deterministic kernel model in [3], fit into our framework. The first four examples fall into
the category of so-called rank-1 kernels, where the graph kernel is of the form k(x,y) = k4 (X)k_(y)
for some nonnegative continuous functions x_ and k4 on S.

Example 2.1 Directed versions of some well-known inhomogeneous random graph models. All of
them, with the exception of the last one, are defined on the space S = Ry for a type of the form
x = (z7,z1), and correspond to rank-1 kernels with k_(x) = = /v and ki (x) = z/V/0, with
0 > 0 a constant. For convenience, we have dropped the superscript (™ from the type sequence, i.e.,

{X1,...,X,} = {xgn), . ,X%n)}.



a.) Directed Erdds-Rényi Model: the arc probabilities are given by
ply) = A/n
where X is a given constant and n is the total number of vertices; ¢n(x;,%x;) = 0.

b.) Directed Given Expected Degree Model (Chung-Lu): the arc probabilities are given by

Jrf
(n) _ Ty

p;; L AT,

where I, = S0 (z7 + ). In terms of (2.1), it satisfies pn(xi,%x;j) = enl%l", where 6§ =

limy, 00 Un/n.

c.) Generalized Directed Random Graph: the arc probabilities are given by

Jr —_
] ln + xi ,I; )
. . . On—lp—az; .
which implies that o (x;,X;) = W, with 1, and 6 defined as above.

d.) Directed Poissonian Random Graph (Norros-Reittu): the arc probabilities are given by

pgjn) =1l—-e ;L ; 9
which implies that ¢ (x;,x;) = (nﬁ(l — e—mjm].‘/ln) - :Ujm;) /(mjx;), with 1, and 0 defined

as above.

e.) Deterministic Kernel Model: the arc probabilities are given by

P = H(X;‘;Xj) AL

for a finite type space S = {s1,...,sm}, and a strictly positive function k on S X S; in terms
of (2.1), pn(x4,%x;) = 0. This model is also known as the stochastic block model.

3 Main Results

We now present our main results for the family of inhomogeneous random digraphs defined through
(2.1). As mentioned in the introduction, we focus on establishing some of the basic properties of
this family, including the distribution of the degrees, the mean number of arcs, and the size of the
largest strongly connected component. When analyzing the degree distributions, we specifically
explain how to obtain the scale-free property under degree-degree correlations.

As mentioned in the previous section, we assume throughout the paper that the nth graph in

the sequence is constructed using the types {Xi,...,X,} = {Xg"), R X,(In)}, where we will often
drop the superscript (™ to simplify the notation. From now on we will use upper case letters to



emphasize the possibility that the {X;} may themselves be generated through a random process.
To distinguish between these two levels of randomness, let P be a probability measure on a space
large enough to construct all the type sequences {{Xgn), 1 <i<n}:n>1}, as well as the random
graphs G (k(1 + ¢y)), simultaneously. Define .# = U(Xgn),l < i < n) and the corresponding
conditional probability and expectation P(-) = P(:|.%#) and E[-| = E[-|.#], respectively.

Our first assumption will be to ensure that the {X ") } converge in distribution under the uncon-
ditional probability P. As is to be expected from the work in [5] for the undirected case, we will
also need to impose some regularity conditions on the kernel x, as well as on the function ¢,. Our
main assumptions are summarized below.

Assumption 3.1 a.) There exists a Borel probability measure p on S such that for any p-
continuity set A C S,

n

p(A) === 31XV € 4) B w(4)  n— o,
=1

where Ls denotes convergence in probability. Note that p, is a random probability measure,
whereas i is not random.

b.) K is nonnegative and continuous a.e. on S X S.

c.) For any sequences {xn},{yn} € S such that x, — X and y, — y as n — oo, we have
On(Xn, ¥Yn) £o0 asn — oo

d.) The following limits hold :

n n . 1 - n
lim TTE ZZ X{",X{M)| = Tim ~E SN R = //52 K(x,y) p(dx)p(dy) < oo
J#i

=1 j=1 =1 j#i

Remark 3.2 The pair (S,u), where S is a separable metric space and u is a Borel probability
measure, is referred to in [5] as a generalized ground space. For convenience, we will adopt the
same terminology here. Throughout the paper, we use “a.e.” to mean “almost everywhere with
respect to the (non-random) measure p”.

3.1 Number of arcs

Our assumption that the types {X;} converge in distribution as the size of the graph grows implies
that the graphs produced by our model are sparse, in the sense that the mean number of arcs is
of the same order as the number of vertices. Our first result provides an expression for the exact
ratio between the number of arcs and the number of vertices.

Proposition 3.3 Define e(Gy,(k(1+y))) to be the number of arcs in G, (k(1+¢y,)). Then, under
Assumption 3.1(a)-(d) we have
1 .
(Gl 9) — [[ rxy)nxn(ay) i (P
asn — 0o.



3.2 Distribution of vertex degrees

We now move on to describing the vertex degree distribution, which is best accomplished by looking
at the properties of a typical vertex, i.e., one chosen uniformly at random. In particular, if D;’i and
D; ; denote the in-degree and out-degree, respectively, of vertex i € [n], and we let { be a uniform
random variable in {1,2,...,n}, then we study the distribution of (Dg’g, D:Lr’g). We point out that
the distribution of (D;g, D:Lig) also allows us to compute the proportion of vertices in the graph
having in-degree k and out-degree [ for any k,l > 0. In the sequel, = denotes weak convergence
with respect to P.

Theorem 3.4 Under Assumption 3.1 we have
(D;E, Dig) = (27,2%), E[Di]— E[Z*], asn— oo,

where Z~ and Zt are conditionally independent (given X) mized Poisson random variables with
mixing parameters

M%) = [ Ry X)p(y) and Ay (X) = [ KXy udy),
respectively, and X s distributed according to p.

As mentioned earlier, we are particularly interested in models capable of creating scale-free graphs,
perhaps with a significant correlation between the in-degree and out-degree of the same vertex.
To see that our family of inhomogeneous random digraphs can accomplish this, we first introduce
the notion of non-standard regular variation (see [28, 31]), which extends the definition of regular
variation on the real line to multiple dimensions, with each dimension having potentially different
tail indexes. In our setting we only need to consider two dimensions, so we only give the bivariate
version of the definition.

Definition 3.5 A nonnegative random vector (X,Y) € R? has a distribution that is non-standard
reqularly varying if there exist scaling functions a(t) / oo and b(t) / oo and a non-zero limit
measure v(+), called the limit or tail measure, such that

tP ((X/a(t),Y/b(t)) € -) = v("), t — 00,

where % denotes vague convergence of measures in M ([0, 00]>\{0}), the space of Radon measures
on [0,00]% \ {0}.

In particular, if the scaling functions a(t) and b(t) are regularly varying at infinity with indexes 1/«
and 1/8, respectively, that is a(t) = t'/*L,(t) and b(t) = t'/PLy(t) for some a, f > 0 and slowly
varying functions L, and Ly, then the marginal distributions P(X > t) and P(Y > t) are regularly
varying with tail indexes —« and — 3, respectively (see Theorem 6.5 in [29]). Throughout the paper
we use the notation R, to denote the family of regularly varying functions with index «.

To see how our family of IRDs can be used to model complex networks where both the in-degrees
and the out-degrees possess the scale-free property, perhaps with different tail indexes, we give a



theorem stating that the non-standard regular variation of the limiting degrees (2, Z1) follows
from that of the vector (A_(X), A1 (X)). Moreover, for the models (a)-(d) in Example 2.1, we have

(A (X), 14 (X)) = (mX) [ ety [ H—(Y)M(dY)> (X, (10X ).

where ¢ = E[XT]/6 and § = E[X~ + X ™|, so the non-standard regular variation of (Z~,Z%) can
be easily obtained by choosing a non-standard regularly varying type distribution pu.

Theorem 3.6 Let X denote a random vector in the type space S distributed according to pu. Sup-
pose that p is such that (A_(X), A\1(X)) is non-standard regularly varying with scaling functions
a(t) € Ryjq and b(t) € Ry and limiting measure v(-). Then, (Z~,Z") is non-standard regularly
varying with scaling functions a(t) and b(t) and limiting measure v(-) as well.

To illustrate our result, we give below an example that shows how our family of random digraphs
along with Theorem 3.6 can be used to model real-world networks.

Example 3.7 As discussed in [36], many real-world networks exhibit both heavy-tailed in-degrees
and heavy-tailed out-degrees. In many of those cases there also appears to be a relationship between
the vertices with very high in-degrees and those with very high out-degrees, as is shown in [36] for
portions of the Web graph and the English Wikipedia graph (this dependence was computed using the
angular measure in [36]). Suppose we want to model such graphs using an inhomogeneous random
digraph. Interesting levels of dependence ranging from the case where the in-degree and out-degree
are independent to where they are essentially the same can be obtained by choosing X = (X, X ™T),
P(X~>z)~k_a™®asz — o0 and Xt = r(X7)Y + (1 —r)Y, where Y is independent of X~
and satisfies P(Y > y) ~ kK'y™8, a,8,k_, k' > 0, r € [0,1] and 0 < v < /3. This choice leads
to P(Xt > 2) ~ kya™” for some other constant ky > 0, and covers the independent case when
r =0, and the perfectly dependent case when r =1 and v = /. Now choose k(x,y) = zTy~ and
note that (A_(X), (X)) = (¢X~,(1 — )X ), where ¢ = E[XT]/E[X~ + XT]. It follows from
Theorems 3.4 and 3.6 that (D;7£,D;§) = (Z7,Z%) as n — oo, where (Z+,Z7) is non-standard
regularly varying. In particular, P(Z~ > 2) ~ k_c®27% and P(Zt* > 2) ~ k(1 —¢)P278 as
2z — 00, and the angular measure between Z~ and Z+ will mimic that of X~ and X ™.

3.3 Phase transition for the largest strongly connected component

Our last result in the paper establishes a phase transition for the existence of a giant strongly
connected component in G, (k(1 4 ¢,)). That is, we provide a critical threshold for a functional
of the kernel x and the type distribution u, such that above this threshold the graph will have a
giant strongly connected component with high probability, and below it will not. Before stating
the corresponding theorem, we give a brief overview of some basic definitions.

For any two vertices i, j in the graph, we say that there is a directed path from 7 to j if the graph
contains a set of arcs {(i, k1), (k1,k2),..., (kt,j)} for some ¢ > 0. A set of vertices V' C [n] is
strongly connected, if for any two vertices i, j € V we have that there exists a directed path from
i to j and one from j to i. Moreover, we say that a giant strongly connected component exists



for our family of random digraphs if liminf,,_,« [C1(Gr(Kk(1 + ¢,)))|/n > € for some € > 0, where
C1(Gp(k(1 4+ ¢p)) is the largest strongly connected component of G, (k(1 + ¢,)) and |A| denotes
the cardinality of set A.

For undirected graphs, the phase transition for the Erdés-Rényi model (pl(?) = A\/n for some A > 0)
dates back to the classical work of Erdés and Rényi in [14], where the threshold for the existence of
a giant connected component is A = 1. The critical case, i.e., A = 1, was studied in [22] using edge
probabilities of the form pgl)
connected component was shown to be of order n?/3. Somewhat unrelated, the corresponding phase
transition was established for the (undirected) configuration model in [25], where the threshold was
shown to be E[D(D—1)]/E[D] = 1, with D distributed according to the limiting degree distribution
(as the number of vertices grows to infinity). Back to the (undirected) inhomogeneous random
graph setting, i.e., pg-l) = k(xi,%5)(1 + ¢n(x4,%;))/n with £ symmetric, the phase transition was
first proven for various forms of rank-1 kernels. In particular, Chung and Lu established in [9] the
phase transition for the existence of a giant connected component in the so-called “given expected
degree” model. The same authors also give in [8] a phase transition for the average distance between
vertices when the type distribution u follows a power-law. Norros and Reittu proved the phase
transition for the existence of a giant connected component for the Poissonian random graph in [26],
along with a characterization of the distance between two randomly chosen vertices, and Riordan
proved it in [30] for the ¢/+/ij model, which is equivalent to the rank-1 kernel k(x,y) = ¥(x)¥(y)
with ¢(x) = /ex and p the distribution of a Pareto(2,1). More generally, the work in [5] gives
the phase transition for the giant connected component in the general kernel case, along with
some other properties (e.g., second largest connected component, distances between vertices, and
stability). The threshold for the existence of a giant connected component is ||T||op = 1, with
| - |lop the operator norm?, where T} is a linear operator induced by s, which in the rank-1 case

becomes || T2, = E[¢(X)?] = 1, with X distributed according to .

= (1+en~1/3)/n for some ¢ > 0, in which case the size of the largest

For the directed case, the phase transition for the existence of a giant strongly connected component
was proven for the directed Erdds-Rényi model (pz(;l) = A/n for some A > 0) in [17] and for the “given
number of arcs” version of the Erdés-Rényi model (number of arcs = An for some A > 0) in [20],
with the threshold being A = 1. The work in [21] studies a related model where each vertex ¢ can
have three types of arcs: up arcs for j > i, down arcs for j < 4, and bidirectional arcs, and proved
the corresponding phase transition for the appearance of a giant strongly connected component.
For the directed configuration model the phase transition for the existence of a giant strongly
connected component was given in [16] under the assumption that the limiting degrees have finite
variance and satisfy some additional conditions on the growth of the maximum degree, and can also
be indirectly obtained from the results in [35] under only finite covariance between the in-degree
and out-degree. The threshold for the directed configuration model is E[D~D*]/E[D~ + D*] =1,
where (D™, D) are the limiting in-degree and out-degree. A hybrid model where the out-degree
has a general distribution with finite mean and the destinations of the arcs are selected uniformly
at random among the vertices (which gives Poisson in-degrees) was studied in [27] and was shown
to have a phase transition at E[D'] = 1. Finally, for general inhomogeneous random digraphs such
as those studied here, the main theorem in [3] establishes the phase transition for the deterministic
kernel in Example 2.1(d) with finite type space S = {1,2,..., M}, without characterizing the strict

T Nlop := sup{[ITfll2 : f = 0,[|fll2 < 1} and || f]5 = [ f(x)*u(dx).



positivity of the survival probability. The authors in [3] also suggest that the general case can
be obtained using the same techniques used in [5] to go from a finite type space to the general
one, however, the proof in [5] requires a critical step that does not hold for directed graphs; see
Section 4.3 for more details.

Our Theorem 3.10 provides the full equivalent of the main theorem in [5] (Theorem 3.1) for the
directed case, and its proof is based on a coupling argument between the exploration of both the
inbound and outbound components of a randomly chosen vertex and a double multi-type branching
process with a finite number of types. Our approach differs from that of [5], done for undirected
graphs, in the order in which the couplings are done, and it leverages on the main theorem in [3]
to obtain a lower bound for the size of the strongly connected component. We give more details on
how our proof technique compares to that used in [5] in Section 4.3.

As in the undirected case, the size of the largest strongly connected component is related to the
survival probability of a suitably constructed double multi-type branching process. To define it,
let 7, (k) and T, (k) denote two conditionally independent (given their common root) multi-type
branching processes defined on the type space S whose roots are chosen according to p and such
that the number of offspring having types in a subset A C S that an individual of type x € S can
have, is Poisson distributed with means

/Ali(y,x)u(dy) for 7:(#;) and /An(x,y)u(dy) for 7?(&), (3.1)

respectively. Next, let p_(x;x) and p(x;x) denote the survival probabilities of 7, (x;x) and
7;L+(/<;; x), respectively, where 7, (x;x) and 7?(&; x) denote the trees whose root has type x. We
recall that a branching process is said to survive if its total population is infinite. We refer the reader
to [24, 2] for more details on multi-type branching processes, including those with uncountable type
spaces as the ones defined above.

In order to state our result for the phase transition in IRDs we first need to introduce the following
definitions.

Definition 3.8 A kernel k defined on a separable metric space S with respect to a Borel probability
measure p is said to be irreducible if for any subset A C S satisfying k = 0 a.e. on A x A°, we
have either p(A) = 0 or u(A¢) = 0. We say that k is quasi-irreducible if there is a p-continuity
set 8" C S with u(S’) > 0 such that the restriction of k to 8’ x S8’ is irreducible, and k(x,y) =0 if
x¢S oryé¢S.

Definition 3.9 A kernel k on a separable metric space S with respect to a Borel probability measure
u is regular finitary if S has a finite partition into sets Ji,...,J, such that k is constant on each

Ji x Jj, and each J; is a p-continuity set, i.e., it is measurable and has n(0J;) = 0.

To give the condition under which a giant strongly connected component exists we also need to
define the operators induced by kernel &, i.e.,

TFf(x) = / sy fy)uldy)  and T f(x) = / k(%) £ (9)(dy).
S S



Note that 7.7 and T, are integral linear operators on (S, i) equipped with the norm
+ +
1T, = suplTE flly < £ 0, 171, < 1 < oo,

which makes them (potentially) unbounded operators in L?(S, 1). We also define their correspond-
ing spectral radii 7(T,}") and r(T}, ), where the spectral radius of operator T in L*(S, u) is defined
as

r(T) = sup{|A\| : A € o(T)},

where o(T') = {\ € C : T'— Al is not boundedly invertible} is the spectrum of 7" and I is the
operator that maps f onto itself.?

The phase transition result for the largest strongly connected component is given below.

Theorem 3.10 Suppose Assumption 3.1 is satisfied and k is irreducible. Let C1(Grn(k(1 + ¢n)))
denote the largest strongly connected component of Gy (k(1+ ¢y)). Then,

IC1(Grn(k(1+ ¢n)))l i p(k) n — oo,

where

olx) = /S p— (3 %) pop (1 X) ().

Furthermore, if p(k) > 0 then r(T;) > 1 and r(T,7) > 1, and if there exists a regular finitary
quasi-irreducible kernel & such that & < k a.e. and r(T5) > 1 (equivalently, r(T4) > 1), then
p(k) > 0.

Moreover, when p(x) > 0 we can characterize the “bow-tie” structure defined by the giant strongly
connected component, C1(Gy,(k(1+ ¢n))), the set of vertices that can reach it (its fan-in), and the
set of vertices that can be reached from it (its fan-out). The following result makes this precise.

Theorem 3.11 Suppose Assumption 3.1 is satisfied and k is irreducible. For each vertex v € [n]
define its in-component and out-component as:

R~ (v) = {i € [n] : v is reachable from i by a directed path in Gp(k(1+ ¢n))}
RT(v) = {i € [n] : i is reachable from v by a directed path in G,(k(1+ ©,))}.

D(ejgne L, ={ve[n]:|R (v)] > (logn)/n} and L} = {v € [n] : |RT(v)| > (logn)/n}. Then, if
p(k) >0,
lim P (C(Gn(k(1+¢n)) = Ly NL, ) =1,
and
Ly |

S /8 p+(k;x)u(dx)  and ‘Ln"‘ Z /S p—(k; x)p(dx)

as n — 0.

3If T is not closed then o(T) = C, and therefore, r(T) = co (see section 21 in [1]).
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Remark 3.12 We point out that we do not have a full if and only if condition for the strict
positivity of p(k), since our operators T, and T; may be unbounded, in which case the continuity
of the spectral radius is not guaranteed. However, when k satisfies

L[gﬂ(x,y)zﬂ(dX)ﬂ(dY) < oo,

then the operators T, and TS are compact (see Lemma 5.15 in [5]), and Theorem 2.1(a) in [12]
gives the continuity of the spectral radius for a sequence of quasi-irreducible kernels k., /' k as
m — 00, ensuring the existence of K in Theorem 3.10. Interestingly, for the rank-1 case we
can indeed provide a full characterization even when the operators T, and T} are unbounded, as
Proposition 3.13 shows.

We end the expository part of the paper with a compilation of all our results for the rank-1 case,
which includes the first four models in Example 2.1.

Proposition 3.13 (IRDs with rank-1 kernel) Suppose that Assumption 3.1 is satisfied with k
irreducible and of the form k(x,y) = k4+(x)k—_(y). Let X denote a random variable distributed
according to p. Then, the following properties hold:

a.) Number of arcs: let e(G,(k(1+ ¢y))) denote the number of arcs in Gn(k(1+ ¢y)), then
e(Gn(K(1+ ¢n)))

n

— Elk_(X)|E[r4(X)] in LY(P) as n — oo.

b.) Distribution of vertex degrees: let (D;{,D;g) denote the in-degree and out-degree of
a randomly chosen verter in Gp(k(l + ¢n)). Set Ap(x) = k4 (x)E[rk—(X)] and A\_(x) =
k—(x)E[k4+(X)]. Then,

(D, e, D)= (Z7,2%),  E[Dr]— E[Z7],

asn — 0o, where Z~ and Z* are conditionally independent (given X) mized Poisson random
variables with mizing parameters A_(X) and A\ (X).

c.) Scale-free degrees: suppose that (k—(X), k(X)) is non-standard regularly varying with
scaling functions a(t) € RV(1/a) and b(t) € RV(1/B) and limiting measure v(-). Then,
(Z~,Z7") is non-standard reqularly varying with scaling functions a(t) and b(t) and limiting
measure v(-) satisfying

d.) Phase transition for the largest strongly connected component: suppose k is irre-
ducible and let C1 (Gn(k(14¢y))) denote the largest strongly connected component of Gy, (k(1+
¢n)). Then,

Ci(Gn(r(1
| 1( n(ﬁ( +80n)))‘ i ,0(/4?), n — o0,
n

with p(k) > 0 if and only if Elk4(X)k_(X)] > 1.

The remainder of the paper is devoted to the proofs of all the results mentioned above.
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4 Proofs

This section contains all the proofs of the theorems in Section 3. They are organized according
to the order in which their corresponding statements appear. Throughout this section we use the
notation X:. X))
K 2] ] . .
§l=mm S 1<igs<n,

to denote the asymptotic limit of the arc probabilities in the graph, and to avoid having to explicitly
exclude possible self-loops, we define pgf) =0 for all 1 < i < n. We also use f(x) = O(g(x)) as
x — 0o to mean that limsup,_, |f(z)/g(x)| < occ.

4.1 Number of Arcs

The first result we prove corresponds to Proposition 3.3, which gives the asymptotic number of
edges in G,(k(1 4+ ¢,)). Before we do so, we state and prove two preliminary technical lemmas
that will be used several times throughout the paper.

Lemma 4.1 Assume Assumption 3.1 holds and define for any 0 < e < 1/2 the events

B;j = {(1 - e)qgl) < pgy) < (14 e)qz(j ), ql(]) } . (4.1)

Then,

S 2SS (0 + o) 1) | <o

i=1 j=1

Proof. We start by defining A;; = {qgl) < €} and noting that the expression inside the expectation
is bounded from above by

%ZZ%‘? (pgl) (1—e)q, u) ZZP (p” (1+6)q§f),Aij> (4.2)
i=1 j=1 i=1 j=1

+%ZZ(1+q§;‘))1(A§j). (4.3)
i=1 j=1

To show that (4.3) converges to zero, let X(™) = X; and Y™ = Y ; where I and J are mutually

independent and uniformly distributed in {1,---,n}, and independent of everything else. Note
that
Ly |5 0+ ania| < Lo |33+ nd )
i=1 j=1 i=1 j=1

= (e '+ 1)E [H(X(n),Y(n))l(H(X(n),Y(n)) > en)} .
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Note that Assumption 3.1(a)-(b) imply that £(X™,Y®) = x(X,Y) as n — oo, where X and Y
are i.i.d. with distribution p. Moreover, Assumption 3.1(d) gives E[x(X™,Y™)] = E[r(X,Y)]
as n — oo. Hence, we can construct ({X(”), Y(n)}nZh X,Y) on a common probability space such
that (X, Y(")) 5 (X,Y) P-as. and (X, Y™) = (X,Y) P-a.s. Fatou’s lemma then gives

limsup F [K(X("),Y("))l(m(X("),Y(”)) > en)]

n—o0

= lim F [/{(X(”),Y(”)) — lirginfE [/{(X(”),Y("))l(ri(X("),Y(”)) <en)

n—oo

< Ew(X,Y)] - E[x(X,Y)] = 0.

To analyze the expectation of the first sum in (4.2), note that

1 s = n n n
EE quz(j)l (pz('j) < (1_6)%(]')’14&)
i=1 j=1

1 ° n n n

= EE Zq( 11 (qu )(1 +on(X4, X)) < (1 - e)qgj) <e(l— 6))]
i=1 j=1

< %E K(X,‘,Xj)l ((pn(Xi,X]‘) < —6)

" i=1 j=1
- [K(XW),Y("))} _E [m(X(”),Y(”))l(cpn(X(”),Y(”)) > —e)} . (4.4)

Similarly, the expectation of the second sum in (4.2) can be bounded as follows

Zzpw (pw 1+6)qZ(J)’ Aij)

lel

= lE ZZ})W (q,j 1+ ¢n(X5, X)) > (1 +€)qz(?)’ qz(J) = )]

11]1

< %E Zzpln)l (on XzaX ) >¢€)

1=1 j=1

-5 iizﬁ?] = B[({mX™, )1+ 0, (X, Y ) } A ) 1pn(X, ¥ ) < )]

i=1 j=1

(4.5)

Using Fatou’s lemma again and Assumption 3.1(c) (which implies that ¢, (X™ Y®) L0 as
n — 00), we have that

liminf E [£(X™, Y™)1(,(X™, Y™) > —e)] > B [k(X,Y)]

n—oo
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and

lim inf B K{/{(X(”),Y(”))(l + @n(X(”),Y(”)))} A n) Ln(X™, YM) < ¢)| > E[r(X,Y)].

n—0o0

It follows then from Assumption 3.1(d) that both (4.4) and (4.5) converge to zero. This completes
the proof. m

The next result establishes the convergence in probability of the expected number of edges in the
graph.

Lemma 4.2 Under Assumption 3.1 we have
s ZZ (X, X;) = //82 x,y)pu(dx)u(dy) and ZZpl — //52 k(x,y)u(dx)p(dy)
=1 j=1 z—l Jj#

in L'(P) as n — oo .

Proof. As in the proof of Lemma 4.1, note that
e 3D X X) = B [, Y]
=1 j=1

where X and Y™ are conditionally i.i.d. given .# with distribution tn (constructed as in
Lemma 4.1). Let X and Y be i.i.d. with distribution p and note that

//S r(x, y)u(dx)u(dy) = E[r(X,Y)].

Next, note that for any fixed M > 0 we have that k(x,y) A M is bounded and continuous, so by
Lemma A.2 in [5] we have that

E[x(X™, Y™ A M] D E[k(X,Y) A M]
as n — 0o. Next, fix ¢ > 0 and choose M > 0 such that E[(k(X,Y) — M)*] < /2. Then,
R
(XM, Y ™Y A M+ (h(X™, Y™) - M)ﬂ ~ ElR(X,Y) AM + (5(X,Y) — M)ﬂ( > e)

f/ﬂ(X(n),Y(n)) A M} — E[k(X,Y) A M]’ +E [(K(X(n),Y(n)) - M)+] > 6/2)

=7
=7
=7

E
E
E :H(X(n),Y(n)) A M} ~ ElR(X,Y) A M]’ > 6/4) +P (E [(R(X(n),Y(n)) - M)*} > 6/4)
E

r 4

<P ( (XM, Y ™) A M} ~ Elr(X,Y) A M]‘ > 6/4) +oE [(m(X("),Y(")) - M)ﬂ .
L €

Furthermore, the same arguments used in the proof of Lemma 4.1 give that

lim sup £ [(H(X(’”, Y™) — M )*] = E[x(X,Y)] - liminf £ [H(X(n),Y(n)) A M]

n—00 n—00
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< E[(k(X,Y) - M)*].

Therefore,

lim sup P (‘E [K(X(n),Y(n))] - E[H(X,Y)]‘ > e) < %E [(k(X,Y) = M)*1],

n—0o0

and taking M — oo gives E [/{(X(”),Y("))] Lif E[k(X,Y)] as n — oo. Since by Assumption 3.1(d)
we have E [x(X™,Y(™)] - E[x(X,Y)], then

E [K(X("),Y(”))] S ER(X,Y)] inLY(P) n— . (4.6)

(n)

For the second result recall that p,;” = 0 and qu) = k(X;,X;)/n, so it suffices to show that

ZZ (p,] qw ) —0 inLY(P) n— . (4.7)

21]1

To see that this is the case fix 0 < € < 1/2 and define B;; according to Lemma 4.1. Next, note that
by (4.6) and Lemma 4.1 we have

IS )| < e ol e [ () ) 1)

i=1 j=1 i=1 j=1 i=1 j=1

IN

:eE[ XM,y }+ —E Z (pw + g )1(3%)

— eE[k(X,Y)]

as n — oo. Taking € — 0 establishes (4.7), which completes the proof. m
We are now ready to prove Proposition 3.3.

Proof of Proposition 3.3. We start by defining W), to be the average number of arcs in the graph
Gn(k(1 4 ¢y,)) given the types, that is, W, := E[e(Gn(k(1 + ¢n)))]/n =130, > e 1pU . Note
that by Lemma 4.2 we have that W,, — E [k(X,Y)] < co in L(P) as n — oo, where X and Y are
i.i.d. with common distribution p. Therefore, it suffices to show that e(Gy(k(1+¢yp)))/n—Wy — 0
in L'(P) as n — oo.

To do this, let Y;; denote the indicator of whether arc (7,j) is present in G (k(1 + ¢5)) and note

that
e(Gn(K(1+ ¢n)) ZZYw

=1 j#i

where the {Yj;} are Bernoulli random variables with means {pg-L)}, conditionally independent given
Z . It follows that

Var (e(Ga(r(1+ )| F) = 3. Var(V12) < YN By 1 =35 Y =

i=1 j=1 i=1 j=1 i=1 j=1
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Therefore,
E [(e(Gu(K(1+ ¢n)))/n = Wn)?] = E [E [(e(Gn(k(1 + ¢n)))/n — Wn)?]]
=F [n*QVar(e(Gn(m(l + n)))|-#)]
<n7 E [nW,] 2o

as n — oo. Hence, (G (k(1 + ¢n)))/n — W, — 0 in L?(P), which completes the proof. m

4.2 Distribution of Vertex Degrees

We now move on to the proof of Theorem 3.6. The proof of Theorem 3.4 is given in Section 4.3,
since it can be obtained as a corollary to Theorem 4.6. We will show that (Z~,Z7) has a non-
standard regularly varying distribution whenever their conditional means (A_(X), A1 (X)) have a
non-standard regularly varying distribution. Throughout the proof we use the notation [a,b] =
{x € R?:a < x < b} to denote the rectangles in R.

Proof of Theorem 3.6. To simplify the notation, let W = (W~ , W) = (A_(X), A\+(X)), and
recall that we need to show that 4(-) = tP((Z~ /a(t) € du, ZT/b(t)) € -) converges vaguely to
v(-) in M4 ([0,00]? \ {0}) as t — co. Note that by Lemma 6.1 in [29], it suffices to show that
74([0,x]¢) — v([0,x]¢) as t — oo for any continuity point x € [0, 00) \ {0} of ([0, ]¢).

To start, fix (p,q) € [0,00) \ {0} to be a continuity point of v([0, -|°) and note that

7((p, 0] (q,oo]):/poo/qootP <aZ(t) € du, bZ(;Edv>

oo (5 24
=tE [P (Z~ > pa(t)| W) P (Z" > qb(t)| W)].

It follows that we need to show that
tli}r&tE [P (Z_ > pa(t)! W) (Z+ > qb(t ‘W)] v((p, o0] x (gq,00]).

To this end, define e(t) = /va(t)loga(t) and d(t) = /nb(t)logb(t) with v > 2¢8, n > 2pa, and
use them to define the events

A ={W~ > pa(t) —e(t)} and By = {WT > qb(t) — d(t)}.
Now note that

tE[P(Z~ > pa(t)|W) P (Z" > qb(t)| W)]
=tE [P (Z >pa(t)|W) P (Z" > qb(t)| W) 1(A; N By)] (4.8)
+tE [P (Z™ > pa(t)|W) P (Z% > qb(t)| W) 1(A; U Bf)] . (4.9)
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To see that (4.9) vanishes in the limit, use the bound P(Poi()\) > p) < e~*(e\/p)? for p > A, where
Poi()) is Poisson random variable with mean A, to obtain that

tE [P (Z~ > pa(t) }W P(Z*" > qb(t)| W) 1(Af)]

<tE[P(Z™ > palt \W) (A7)]

<tFE [exp{—W + pa(t) (1+log(W ) — log(pa(t) )} 1(A7) ]

< texp{—(pa(t) — e(t)) + pa(t)(1 + log(pa(t) — e(t)) — log(pa(t)))}

e )
-t (2 0 (2 )) <5 (10 (102))

where in the third inequality we used the observation that g(u) = —u + pa(t) log u is concave with
a unique maximizer at u* = pa(t). Similarly,

tE [P (Z~ > pa(t)| W) P (Z* > gb(t)| W) 1(Bf)]

—n (log b(t))3/?
ot (o3

Our choice of 7, n guarantees that both terms converge to zero as t — oo, hence showing that (4.9)
does so as well.

It remains to show that (4.8) converges to v((p, 00| x (q,00]) as t — co. To do this, we first note
that (4.8) is equal to

tP(AyNBy) —tE [(1—P(Z > pa(t)|W) P (Z* > qb(t)| W)) 1(A; N By)]

where
tE[(1—=P(Z > pa(t)|W) P (Z" > qb(t)| W)) 1(A; N By)]
<tE[P(Z~ <pa(t)|W)1(A N By)] +tE [P (Z* < qb(t)| W) 1(A¢ N By)]
<tE[P(Z*<pa )| )1Ath}+tE[ (ZF < qb(t |W)1Ath)}
+tP(AcmAth) tP(AmBmBC)
with

Ay ={W~ >pa(t) +e®)} C A, and By ={WT >qb(t)+dt)} C B;.
Now note that the inequality P(Poi()\) < p) < e *(eX/p)P for 0 < p < X gives that
tE [P (27 < pa(t)| W) 1(4; 1 By)|
<tE [exp{—W* +pa(t) (1 + log(W™) — log(pa(t))) } 1(A; }
< texp{—(pa(t) + e(t)) + pa(t) (1 + log(pa(t) + e(t)) — log(pa(t)))}

= texp {—e(t) +pat) log (1 - pif%) }
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(e o \\_,. (log a($))"”
=100 (~gputey *© (Gathz)) =0 (”O< a(t)1? ))

where we used again the concavity of g(u) = —u + pa(t) log u. Similarly,

{E [P(Z+ < gb(t)| W) 1 Ath)} < th(t) % <1+0 (W)) :

and our choice of v,n give again that

lim {¢B [P (27 < pa(t)| W) (A1 By)| + tE [P (27 < gb(t)| W) (41 By)| } =0 (4.10)

t—o00

Next, let vi(du,dv) = tP(W~ /a(t) € du, WT /b(t) € dv) and note that for any 0 < € < p A ¢, we
have that
lim sup {tP(AC NANB) +tP(A:N BN }
t—o00

BY)
— lim sup {1 ((p — () /a(t), p + () /a(t)] x (q — d()/b(t), o))
)

+vi ((p — e(t)/a(t), o0] x (g — d(t)/b(t), Q+d( )/b(@)])}
Sligigp{ut((p—e,p+e] (g—€00])+ v ((p—€00] x (¢g—€,q+¢€])}

:V((p_eap+6] X (q—E,OO])+V((p—€,OO] X (q_€7q+6])
Moreover, since (p, q) is a continuity point of v, then

lelf“{”(( p—e&pte x(qg—eoo])+v((p—e€oco]x(qg—eq+e)}=0.

It follows that . .
tim {tP(A5 0 A0 By) + tP(A 0 B BY) | =0,

t—o00

which combined with (4.10) gives that

Jim ¢tE[(1—P (27 >pa(t)| W) P(Z7 > gb(t)| W)) 1(A; N B1)] = 0.

Finally, the continuity of v at (p, ¢) also yields that

Jim tP(A; 0 By) = lim v, ((p = e(t)/a(t), 00] x (g — d(t)/b(), oe]) = v ((p, o0] x (g, ]) -

4.3 Phase transition for the largest strongly connected component
The last part of the paper considers the connectivity properties of the graph, in particular, the

size of the largest strongly connected component. As mentioned in Section 3.3, our Theorem 3.10
provides the directed version of Theorem 3.1 in [5]. However, our proof approach differs from the
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a) b)

Figure 1: Directed graph with n vertices. a) There is no strongly connected component. b) The
same graph with one additional arc; the largest strongly connected component is giant of size n.

one used in [5] in the order in which we construct the different couplings involved. Specifically,
n [5] the authors first couple the graph G, (k(1 + ¢,)) with another graph G, (km), where rp,
is a piecewise constant kernel taking at most a finite number of different values and such that
Kkm /' Kk as m — oo. Then, they provide a coupling between the exploration of the component of
a randomly chosen vertex in Gy (k) and that of a multi-type branching process, 7, (km), whose
offspring distribution is determined by k,,. The phase transition result is then obtained by relating
the survival probability of 7, (k) with the survival probability of its limiting tree 7,(x). Our proof
leverages on the work done in [3], which applies to a related graph G, (kn,), to establish a lower
bound for the size of the largest strongly connected component. For the upper bound, we give a
new direct coupling between the exploration of the in-component and out-component of a randomly
chosen vertex in G, (#(1 + ¢5)) and a double tree (7, (km), T, (km)), where iy, 7 K as m — oo.
We then relate the survival probabilities of (7, (km), T, (km)) with those of their limiting trees
(T (k), T, (k)) as m — oo.

Interestingly, trying to adapt the approach used in [5] to the directed case leads to a phenomenon
that does not occur when analyzing undirected graphs. Namely, if we consider two coupled undi-
rected graphs G, (k(1 + ¢,)) and G, (K'(1 + ¢}))) such that every edge in the first graph is also
present in the second one but not the other way around (e.g., when k(x,y)(1 + pn(x,y)) <
K (x,¥)(1 + ¢l (x,y)) for all x,y € S), then, the difference in the sizes of the components of a
vertex present in both graphs can be bounded by the difference in their number of edges (see
Lemma 9.4 in [5]). However, in the directed case, this is no longer true, as Figure 1 illustrates.
In other words, the existence of a (giant) strongly connected component can be determined by a
single arc. For this reason, a coupling of the graphs G, (k(1 + ¢5)) and Gy (k,), such as the one
used in [5], does not provide an upper bound for the size of the strongly connected component in
the directed case. This may be a notable observation considering the folklore that exists around
the equivalence of undirected and directed networks.

To ease its reading, we have subdivided this section into two subsections. In the first one we
provide our coupling theorem between the exploration of the in-component and out-component of
a randomly chosen vertex in Gy (k(1 + ¢,)) and the double tree (7, (km), T, (km)). The second
subsection gives the proof of Theorem 3.10, which establishes the phase transition for the size of
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the largest strongly connected component.

4.3.1 Coupling with a double multi-type branching process

Starting with a randomly chosen vertex in G, (k(1 + ¢y)), say vertex i, we will perform a double

exploration process that we will couple with a double multi-type branching process {Zﬁ”) :t >0}
having “types” {1,...,n}. Note that these “types” are actually the identities of the vertices in [n],
so to avoid confusion with the actual types of each of the vertices, i.e., {Xy,...,X,}, we will say

that a vertex in the double tree has an identity, not a “type”. The double tree is started at Z(()”) =
(21,0,2270,...,Zn70) and is such that for ¢ > 1, Z(n) (th,ZQt,.. 7- th,Z;'t,...,ZA;:t) e

n,t’

N2" where Z it denotes the number of individuals of identity j in the tth inbound generation of the

double tree and ZJ'-; denotes the number of individuals of identity j in the tth outbound generation
of the double tree. Moreover, the number of offspring that each node in the double tree has is
independent of all other nodes in the double tree, conditionally on the identity of the node. The
initial vector Z(()n) is set to equal e;, where e; is the unit vector that has a one in position ¢ and
zeros elsewhere; note also that it does not have a +/— superscript since it is at the center of the

double tree.

In order to define the offspring distribution of nodes in the double tree, we fix a regular finitary
kernel k,, on S x S (see Definition 3.9) satisfying

0 <rm(xy) <k(x,y) foralx,ye€sS,

and such that
My M,

=3 dMixe g™ yealm,

i=1 j=1

for some partition {ji(m) 01 <i < M,} of § and some nonnegative constants {c,g;n) 1 <45 <

M}, M, < co. Now let the number of offspring of identity j that a node of identity i in the inbound

tree, respectively outbound tree, has, be Poisson distributed with mean 7"]( ) , Tesp. r( ) , where:

T~ = an TZ] - (m) 9
nun%(g ) niin (o))

and 6(i) = j if and only if X; € jj(m). We denote 7, (km; X;) and T, (km; X;) the inbound

and outbound trees, respectively, whose root is vertex i. Note that the trees E_(ﬁm;X,-) and
T (km; X;) are conditionally independent (given .%) by construction.

Note: We point out that in the double tree identities can appear multiple times, unlike in the graph
where they appear only once. In either case, identities take values in the set [n] = {1,2,...,n}.

Remark 4.3 An important observation that will be used later is that the double tree Zgn) =
(Zit,.. 7= Zfrt,...,ZA;:t) € N?" defined above has the same law as the double tree ng) =

n,t’
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(Zita el ZJ\ZIm ” Zit» e Z&m .)€ NZ2Mm (Zém) = eq() if Zén) = €;), whose offspring distributions
are Poisson with means

m;; = cg.zn)u(j.(m)) and m;; = cl(-;n)u(@(m)), 1<d,j < My,

Moreover, the latter is the same as (T, (km;X), T," (km; X)) for any x € \Z(m).

Recall that Y;; = 1(arc (7,7) is present in Gp(k(1 + ¢5))) is a Bernoulli random variable with
success probability
(n) K‘(Xiv XJ)(l + SOTL(XM X]))

S (n) _
S - AN, 1 <i#j<n, pl-?—().

(m,n)
ij
on the outbound side, using a sequence

We will couple Y;; with a Poisson random variable Z;; having mean r on the inbound side,

. . . 5 . ~(m,n
and with a Poisson random variable Z;; having mean 7"1(]‘ )

{Uij : 1 <1i,j <n} of ii.d. Uniform(0,1) random variables.

The exploration of the graph and the construction of the double tree are done by choosing a vertex
uniformly at random among those which have not been explored. Starting with vertex 7, we fix
the number of vertices to explore in the in-component of i, say k;,, and the number of vertices
to explore in the out-component of i, say k... A step in the exploration of the in-component
(out-component) corresponds to identifying the inbound (outbound) neighbors of the vertex being
explored. The exploration of the in-component continues until we have explored k;, vertices or
until there are no more vertices to reveal, after which we proceed to explore the out-component
for ko steps or until there are no more vertices to reveal. Moreover, we allow k;, and k,, to be
stopping times with respect to the history of the exploration process.

Vertices in the graph can have one of two labels: {inactive, active}, or they may be unlabelled.
Active vertices are those that have been identified to be in the in-component, respectively out-
component, of vertex ¢ but whose inbound, respectively outbound, neighbors have not been revealed.
Inactive vertices are all other vertices that have been revealed through the exploration process but
that are not active; again, there is an inbound inactive set and an outbound inactive set. Inactive
vertices on the inbound side have revealed all its inbound neighbors, but not necessarily all their
outbound ones; symmetrically, inactive nodes on the outbound side have revealed all their outbound
neighbors but not necessarily all their inbound ones.

In the double tree we will say that a node is “active” if we have not yet sampled its offspring, and
“inactive” if we have.

Notation: For r =0,1,2,..., and assuming the chosen vertex is i, let
A (AF) = set of inbound (outbound) “active” vertices after having explored the first r

vertices in the in-component (out-component) of vertex i.

I7 (I) = set of inbound (outbound) “inactive” vertices after having explored the first r

vertices in the in-component (out-component) of vertex i.
T~ (T.F) = identity of the vertex being explored in step 7, r > 1, of the exploration of the

7 T

in-component (out-component) of vertex i.
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A7 (AF) = set of “active” nodes in T, (Km; Xi) (7;L+(/<;m; X;)) after having sampled the offspring
of the first 7 nodes in T, (fim; Xi) (T, (km; X))

I7 (IF) = set of identities belonging to “inactive” nodes in T, (Km; Xi) (7;+(/<am; X;)) after
having sampled the offspring of the first r nodes in 7, (rm; X;) (7;f(fim; X5))-
T (TF) = identity of the node in T, (Km; Xi) (n+(l-€m; X)) whose offspring are being sampled

in step r; 7 > 1.

Ezxploration of the components of vertex ¢ in the graph:

Fix k;p, and oy

1) For the exploration of the in-component:
Step 0: Label vertex ¢ as “active” on the inbound side and set Ay = {i}, [, = @.
Step r, 1 <7 < kin:

Choose, uniformly at random, a vertex in A ;; let T,” = i denote its identity.

a) For j=1,2,...,n,j #1i:

i. Realize Yj; = 1(Uj; > 1 — pii). If Y, = 0 go to 1(a).
ii. If Y;; =1 and vertex j € I,_; UA,_;, do nothing. Go to 1(a).
iii. If Yj; = 1 and vertex j had no label, label it “active” on the inbound side. Go to
1(a).
b) Once all the new inbound neighbors of vertex i have been identified and labeled “active”,
label vertex ¢ as “inactive” on the inbound side.
c) Define the sets A, = A, U {new “active” vertices created in 1(a)(iii)} \ {i} and I,” =
I,_, U{i}. This completes Step r on the inbound side.

2) For the exploration of the out-component:
Step 0: Label vertex i as “active” on the outbound side and set AJ = {i}, I] = 2.

Step r, 1 <7 < koyt:

Choose, uniformly at random, a vertex in A;Ll; let T.7 = i denote its identity.

a) For j = 1,2,...,n,j7éi,j¢I];nUAl;n:
i. Realize Y;j = 1(Uy > 1 pi”). If Yi; = 0 go to 2(a).
ii. If Y;; = 1 and vertex j € I;tl U A;,tl, do nothing. Go to 2(a).
iii. If Y;; = 1 and vertex j had no label, label it “active” on the outbound side. Go to
2(a).
b) Once all the new outbound neighbors of vertex i have been identified and labeled “ac-
tive”, label vertex ¢ as “inactive” on the outbound side.

c) Define the sets Af = AT | U {new “active” vertices created in 2(a)(iii)} \ {i} and I, =
I7 ;U {i}. This completes Step r on the outbound side.
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Note that by setting ki, = inf{r > 1: A, = @} and koy = inf{r > 1: A} = @} we can fully
explore the in-component and out-component of vertex . We now explain how the coupled double
tree is constructed.

(1,1)
1,1
é I
(H
(1,2)

22,0 2.1

26

@ (2 1)
2.2.2)
@

(2,2)
3) (22)

(2,2,3)

(4.,1)

[«

Figure 2: Exploration of the graph and coupled tree. We explore vertex 7 in the graph, which
means the root of the double tree has identity Ty = 7. Node identities in the double tree are
depicted inside the circles, whereas tree labels are right on top, e.g., node (2,2, 3) on the outbound
tree has identity T(2 5 3) = 41, whereas node (3) on the inbound tree has identity 1|3y = 22.

Coupled construction of the double multi-type branching process:

Let g~'(u) denote the pseudo inverse of function g, i.e., g~} (u) = inf{z : u < g(x)}. Let Gj;

and GZJ be the distribution functions of Poisson random variables having means 'r( ™) and r(]m n),

respectively. On the double tree we use the index notation i = (i1,...,4,) to 1dent1fy nodes in the
rth generation (inbound/outbound) of the double tree. Let T; denote the identity of node i; see
Figure 2.

1) Construction of the inbound tree:
Step 0: Set Z(()n) =¢;. Let flg = {0}, Ty =1, f[)_ = .
Stepr, 1 <r < ki:

Choose a node in i € A~_,, uniformly at random; set Tr_ =1T;.

r—1°
I. If this is the first time identity T; appears in the inbound tree, do as follows:

a) For j=1,2,...,n,j ¢ {Ti}:
i. Realize Zjm, = G;1.(Ujn). If Zjz, = 0 go to 1(I)(a).
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ii. If Z;1, > 1 label each of the newly created nodes as “active” on the inbound
side. Go to 1(I)(a).
b) For j =T;:
i. Sample Z *T to be a Poisson random variable with mean 7“]( T ), independently
of everythmg else. If Z7 1, = 0 go to 1(I)(c).

ii. If Z* 1, = 1 label each of the newly created nodes as “active” on the inbound
81de "Go to 1(I)(c).

¢) Once all the inbound offspring of node i have been identified, label identity T; as
“inactive” on the inbound side.

d) Define the sets A, = A~ U{new “active” nodes created in 1(I)(a)(ii) and 1(I)(b)(ii)}\
{i} and I = I, U {Ti}. This completes Step 7 on the inbound side.
II. Else:
a) For j =1,2,.
i. Sample Z *T to be a Poisson random variable with mean 7“]( T ), independently
of everythmg else. If Z7 . = 0 go to 1(II)(a).
ii. If Z* 1, = 1 label each of the newly created nodes as “active” on the inbound
side. Go to 1(I1)(a).
b) Once all the inbound offspring of node i have been identified, label identity T; as
“inactive” on the inbound side.

¢) Define the sets A= = A~ | U {new “active” nodes created in 1(IT)(a)(ii)} \ {i} and
I- =17, U{T;}. This completes Step 7 on the inbound side.

2) Construction of the outbound tree:
Step 0: Set Al = {0}, Ty =i, I =
Step 7, 1 <71 < kowe:

Choose a node i € A, uniformly at random; set TTJF =1T;.

r—1»

I. If this is the first time identity T; appears in the outbound tree, do as follows:
a) For j =1,2,...,n, j ¢ {T3} U{T} : T; fon or j E/Ar s
i. Rea}hze Zrj = Gyl (Unj). I Zr, 5 = 0 go to 2(I)(a).
ii. If Z7, ; > 1 label each of the newly created nodes as “active” on the outbound
side. Go to 2(I)(a).
b) Forje{ﬂ}U{T-:T-ef_n orjefl_ b
~(m,n)

i. Sample Z 5 ; to be a Poisson random variable with mean T , independently
of everythmg else. If Z} =0 go to 2(I)(b).

i, If Z x T =1 label each of the newly created nodes as “active” on the outbound
side. Go to 2(I)(b).

c¢) Once all the outbound offspring of node i have been identified, label identity T; as
“inactive” on the outbound side.

d) Define the sets A} = AT U{new “active” nodes created in 2(I)(a)(ii) and 2(I)(b)(ii)}\
{i} and I = f;_l U {T;}. This completes Step r on the outbound side.
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II. Else:
a) For j=1,2,...,n

(tn;n) , independently of

i. Sample Z}hj to be a Poisson random variable with mean 7,
everything else. If Zij =0 go to 2(II)(a).

ii. If Z;‘Ti > 1 label each of the newly created nodes as “active” on the outbound side.

Go to 2(IT)(a).

b) Once all the outbound offspring of node i have been identified, label identity T; as
“inactive” on the outbound side.

c) ]?eﬁne the sets A = A | U{new “active” nodes created in 2(IT)(a)(ii)} \ {i} and I, =
I,_, U{T;}. This completes Step r on the outbound side.

Note: As long as the active sets in the graph and the double tree are the same, the chosen nodes
in steps (1)(I) and (2)(I) are the same as the vertices chosen in steps (1) and (2) of the graph
exploration process.

Definition 4.4 We say that the coupling of the graph and the double multi-type branching process
holds up to Step r on the inbound side if

A ={Ty:je A7}y and  |A7|=|A7| forallO<t<r,
and up to Step r on the outbound side if
AF ={Tj:je A} and  |Af|=|AF| forallO<t<r

Let Ty denote the identity of the vertex whose in and out-components we want to explore. Define
the stopping time 7~ to be the step in the graph exploration process of vertex Ty during which the
coupling breaks on the inbound side and 7" to be the step during which it breaks on the outbound
side.

Remark 4.5 Note that 7~ = r if and only if either:
a. Forany j=1,2,...,n, j¢{T Y UA_ UI_,, wehave Z; - # Y, in step (1)(I)(a)(i),
b. For any j € A,_ UI,_, we have Z,; - > 1 in step (1)(I)(a)(i),
c. Z;F,TF > 1 in step (1)(I)(b)(1),

and 7 = r if and only if either:

d. Foranyj=1,2,...,n,j¢ {Tj}UIk_m UAL UAT UL, we have ZTT*]‘ + Yp+ i in step
(2)(1)(a)(i),

e. For any j € AT | UIT | we have ZTﬁj > 1 in step (2)(I)(a)(i),

fo Forany j e {T; } Ul UA. , we have Z;ﬁ,j > 1 in step (2)(1)(b)(1).
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We are now ready to state our main coupling result, which provides an explicit upper bound for the
probability that the coupling breaks before we can determine whether both the in-component and
the out-component of the vertex being explored have at least k vertices each or are fully explored.

Throughout the remainder of the paper, we use the notation P;(-) = E[1(-)|Ao = {i}] and E;[-] =
E[-|Ag = {i}]; also, ||x||; = >_, |zs| for any x € R". Similarly to the definition of A_(x) and A} (x),
define

A (x) = /S fm(y,x)u(dy)  and  AUY(x) = /S K (X, y)p(dy),

Mo (%) = /S by Xpin(dy)  and X5 (x) = /S o (%, ) in(dy),
and

Ao (%) = /S s(y.X)un(dy)  and  AH(x) = /S (%, ¥ )n(dy).

Theorem 4.6 Consider the exploration process described above along with its coupled double tree
construction. Define for any fixed k € Ni the stopping times o, = inf{t > 1 : |A/| + |I; | >
korA; =2} and o) ={t>1:|Af|+ || >k or A = @}. For any 0 < e < 1/2 and any
n,m &€ Ny,

1 n

ﬁZIF’Z- ({T* <o tu{rt< a:}) < H(n,m,k,e),

i=1

where

k r—1
m -1 —1—
H(n,m,k,e) = 1(Qy,.,) + 4ek? + 2ek? (1 + sup AU )(X)> + 1) E <7“ . >2r 1=s

xES r=1 s=0
. { /S () g (X (dx) + /3 (i ”>>Sg,:m<x>un<dx>},

the linear integral operators F(_m’n) and P(j””) are defined in Lemma 4.9, the functions g, , . and

g,TWE are defined according to

I (Xi) = min {1, (14 56)A, (Xi) = A (Xe) + (14 €) D08 + ¢\ 1(B%) ¢,
j=1

7

e (Xi) = min § 1, (14500 (Xs) = Ay, (Xa) + (1+€) Y (0 + ¢l 1(Bg) ¢
,u

j=1
Mm
t=1 { :un(~7t )

—1 1(Mn(s7t(m)) >0) < 6} ,
Bij = {(1 - e)qz(j) Spl(-j) <(1 +6)qz(]), ql(]n) < e}.

Moreover, H(n,m,k,e¢) Eif fI(m, k,e€) (defined in Lemma 4.10) as n — oo and satisfies

lim lim H(m, k,€) = 0
m oo €l0

for any fized k > 1.
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Before proving the theorem, we will state and prove several preliminary results. The first one
below gives an upper bound for the number of offspring sampled in each side of the double-tree
(T (km), T;F (Km)) up to step &, and step &;", respectively.

Lemma 4.7 Let 6, =inf{t > 1: A7 |+ |I7| >k or Ay =2} and 6;" = inf{t > 1: |AF|+ || >
k or AT = @}. Then,

I-I—

] §k+ksup)\(, ™) (x) and ZE [
x€eS

+ |AT,

} <k+ ksupAT)(x).

xeS

Proof. Define G, to be the sigma-algebra containing all the information of the exploration process
of the in-component of vertex ¢ up to the end of Step r and including the identity of the active
node 7", ;. Note that

E; {ff_ +‘A?_]
%k 9k
=E ||, +‘Agk_1 +sz’fa*
Jj=1 k
k n
<k—1+Y B |16, =) 7, 4
r=1 j=1

=k =1+ Y B 165 > = DE |1 Y75 = k- |47 -
— j:1

n
Ir—l‘ Z 2y
=1

Note that in the last equality the term that would correspond to {fl; = @} in the description
of the event {6, = r} vanishes since > "_ Z; - = 0 in that case. Now use the observation

that 3", Zj; is a Poisson random variable Wlth mean » %, J(l ) = Am )( X), and the identity

[Xl(X > 7)] < E[X] = X\ when X is Poisson(\), to obtaln that

k

n
S E 165 >r—1E |1 Zzﬁ;zkf‘fi;l‘f

r=1

n
I;,l) > Zii-| 9
j=1

gzk: B 165 > r = DA™ (X4 )]

< ksup A" (x).
xX€ES

The proof for the outbound tree is essentially the same and is therefore omitted. m

The next result is a technical lemma giving an explicit upper bound for the ratio of independent
Poisson random variables.
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Lemma 4.8 Let X,Y be independent Poisson random variables with means X and u, respectively.
Let a,b > 0. Then,

[ a+ X 2a A

Tb4+1 A4pu

(1—e?h).

T b+ X4V >1
b x vy e XS ﬂ

Proof. Recall that X given X +Y = n is a Binomial(n, \/(A + p)). Hence,

E[a+X1w+X+Y2U]

b+ X +Y
a a+ X
—E|- 1(X4Y =0b>D)|+E|— = 1(X+Y >1
XY =0z )+ L+X+Y X+Y21)
a  Ela+ X|X +Y =n]
= 2> 1)P(X +Y = P(X+Y =n).
Jlb > DP(X+Y =0)+ ) g (X +Y =n)

n=1

Now use the observation that X given X +Y = n is a binomial with parameters (n, A\/(x 4+ \)) to
obtain that

iE[a%—X!X—i—Y:n

] _
- P(X+Y =n)

n=1

Za—i—n)\/ A+ A)
B b+n

P(X+Y =n)

A = n
_ (X+Y = P(X +Y =
2;b+n * 7U+u+Ag;b+n( Y =n)

a

IN

A
P X4+Y>1)+—PX+Y >1
FLPXEY 21+ P Y 2 )
A
P(X+Y >1).
(b+1 A+ > X+Y=1)
Using the observation that (a/b)1(b > 1) < 2a/(b+ 1) gives that

a+ X
b+X+Y

2a A
—P(X+Y >1
b+1+)\+u (X +Y 21),

1(b+X+Y21)} <

which completes the proof. m

The following result constitutes a key step of the proof of Theorem 4.6 by providing an upper
estimate for the distribution of the identities of the active nodes T~ and T'.

Lemma 4.9 Let h be a nonnegative function on S, then

|
—

T

Eduﬁ;lfgmogrﬂg (“_vw"l%ﬂﬁmfmxa

S

I
=)

s

and
r—1

B [1AF 2 o] < 3 (7 )2 e,

=0

vl
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where F(_m’n) and Fg_m’n) are the following linear integral operators:

jm) A"y
F(_m’n)h(x):/ p ﬁgjf a (em) )-ﬁm(y,X)h(Y)Nn(dY)
S Hn(jﬁ(y)) A= (x)

and

(m) (m)
- pIGD) (1
P (x) = HY) ( - L (%, Y)(Y) pn(dly),
(m) )
S Nn(jﬂ(y)) Ay (x)

with ¥(x) =t if and only if x € Jt(m)

Proof. Let W, = (W,;,..., W) denote the process that keeps track of the identities of the
vertices in the active set fl; for t > 0; that is, Wi denotes the number of tree nodes with identity
7 in fl; . Then,

PA, #, 17 = 1) =Ei [L(IW_ [l = 1) P(T; = (W)

.
=E; | (W, [l > 1)
W,k

| Wr_—l,l - - N

Wil

where ||(z1,...,2,)|1 = |z1| + - - + |xn|. Now let (h1,...,hy) = (R(X1),...,h(X},)) and note that

B [L(A, # 2)h(Xs0)] = thP A #0,T7 =)

Z hE

Moreover, provided [|[W,_,|[1 > 1, we have

r 1l _
(W, > 1)
W, 1t Wy

WZz] LW, [l > 1)] :

E| Vil LW,y > 1) | W,
Wil -l 2
Wrill — _ N
= Z]P) -1 — S|WT 2)E ~— 1 (HWr—lnl > 1) Wr—27{Tr—1 = 5}
W41l
- W_Qs _Wr_—2l+ZZS_1(S_l - ]
o ot Zjs) > W
Z < [W,._ 2”1 i Wilo i+ Zjs) — JZ::l 2 2

Zn: r— 2 ,8 W_ —2,1 + le
”Wr 2”1 Z (W_ + ZJS) -

r—2,7

M:

'r 2]+Z]5 = W?"_—Q

<.
Il
-
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Now use Lemma 4.8 with a = W, _, i b= Z -1, X=Z and Y = Z]# js to obtain

’r‘ 2]
that
W + Z; n
r—2.s r—2,1 s )
- (W, +Zjs) > W
ZHWT 2H1 Z <Wr 2J+Z]S)_]~ ; r—2,7 js 9
HWT o Uwe 2||1 > 1rj<;nn)
QW_QI + n W'r'1278 7(m7n)
HWT ot FHIW ol ™
where

)

(m,n) —Amx,
%(smn) =& (m,n) <1_e_ Lri;ﬂm)) = z(smn)(l _(il)A - )
Z;‘L:I Tis AZ7(Xs))

and we use the convention that (1 —e~%)/0 = 1. Tt follows that
E: 1A, # 2)h(Xy)]
S 2W,. o) 2
hi 2l g Mz LW, sl = 1)
Z {\Wr 211 Z W sl } ’

- W’r_—Q m,n
2wy Wrali 2 D) LY, >]
= r—2

=1

<E;

= 2E,; _1( A", # D)h i }+EZ~

=28, (LA, # @)hp- | +E;

7‘

ZP "~ = sIW) (W[l > 1>r<_m’">h<xs>]
s=1

= 28, [1(4; 5 # ©)h(Xg )] +Ei [1(Ar2 £ )T "X )]

r—1

Letting a, s = E; 1(A- 1 #F o) rim n)) h(XTA;)}, and iterating r — 2 times we obtain that

r—1
r—1 r—1l—s
aro < 20r_10+ ar_1,1 < g 5 2 ais,
s=0

which yields

r—1

1 -1 m,n
E; |:1(A;71 75 @)h(XT,)} < Z (T )27"—1—3(1—\(_ ) ))sh(Xl)
r s

s=0
The proof for E; [ (At | #9)W(X T+)] is essentially the same and is therefore omitted. m
Lemma 4.10 Let H(n,m,k,€) be defined as in Theorem 4.6, then

H(n,m,k,e)iﬁ(m,k,e) n — 0o,
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where

k
H(m, k,¢) = 4ek? + 2¢k? <1 +Sup)\( )( )) —|—Z

xeS
A L g nta + [ g ooutax ),

where
Im.(X) = min {1, (14+5e)A_(x) — A (x

g;;?e(x) = min {1, (1+5e)Ap(x) — A(j”)(x)} ,

N~—
——

m)

and the linear integral operators I‘(, and Fim) are given by

A
F(,m)h(x) = /S (1)\(m)(x)> By, X)h(y)p(dy),

M)
T h(x) = /S %)(X)) -k (X, y)h(y)p(dy).

Furthermore, for any fired k > 1,

lim lim H(m, k,€) = 0.
m ‘oo €l0

Proof. Start by noting that Assumption 3.1(a) implies that 1(£,,) Zolasn — 00, so the
convergence of H(n,m,k,e) will follow once we show that

L g () [ (10 (ot (4.11)
and
L gt o) B [ 07 outix) (4.12)
S
as n — oo for any fixed s € N. Let
) (1 e700) w(Ty)
wm(yax) =T T, /fm(yax) and Tn(Y) = W
AT (x) (T

and note that for any function h and x € Jj(m), we have

M,
T (x) = /S oy (v, X)) (dy) = 3 0 (™),

=1
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where
(m,n) _ — (m) (m)
di ;" =ra(y)w,(y,x) forally € 7,77, x € J;

7" (h) = /J oy Y )i ().

In general, for s > 1, we have that
M,
(Fgm’n))sh(x) _ ZIl'(m’n)(h)((D(mM))s)iJ for x € ‘-7j(m)

and
M M

/s@(-m’"U X)pin(dx) = > ST () (D)), i (T,

7j=11i=1

where D™ is the M,, x M,, matrix whose (i,7)th component is dg;b’n). Define D™ to be
the matrix whose (i,7)th component is dl(-?) = w,,(y,x) for all y € ji(m),x € Jj(m). Since by

Assumption 3.1(a) we have that ,un(jj(m)) il ,u(Jj(m)) and dl(-?’n) Lod™ as n — oo for all

i,j
1<4,5 < M, it follows that

My, M,
lim [ (0) g, () () ZZ(JLH;OI Gan.) (D))i5u( ™).

n—oo S

assuming the last limit exists for each 1 < i < My, To see that it does let
Imm.e(x) =min {1, (1+ 5€)A;, (x) — A, (x)} and note that by Lemma 4.1,

1+€ Z ijl +qu Jc'l)io

lej(m) 7j=1

T Gnnd) = 2 G| <

(2 (2

as n — oo. Now let X and Y be conditionally i.i.d. random variables (given .%) having
distribution p,, (as constructed in Lemma 4.1). Assumption 3.1 implies that (X, Y("™) = (X,Y)

as n — oo, where X and Y are i.i.d. with distribution y, and Lemma 4.2 gives E [/i(X(”), Y(”))] iR
E[r(X,Y)]. Therefore, by bounded convergence,

I () = E[1X) € 70 min {1, (14 56)E [ k(X Y1) — mm(X(”),Y("))‘ x| 1]

1

L E [1(X e 7™y min {1, (1 + 56) E [5(X,Y) — ki (X, Y)] X}}]

—. IZ,(m) (Gm.e)s

as n — 0o. We conclude that
2" (Gond) = I ()

(2
as n — 0o, and noting that

My M,

S5 20 (g J (D)) (™) = /S () g (x)u(dx)

j=1i=1
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completes the proof of (4.11). The proof for (4.12) is essentially the same and is therefore omitted.
This concludes the proof that H(n,m,k,e€) i ﬁ(m,k‘,e) as n — o0o. To compute the limit of

H(m, k, €) note that by monotone convergence,

() e geonea + @0y eonao)

1 s=

lim H (m, k, €) = Z

k
0
el P

where g (x) = min
defined by

—

1, AL (x) — )\im) (x)} Now let I'_ and T'y be the linear integral operators

1— e_)‘+(x)

)
T = [ S Ay0yldy) and Teh(x) = [ (%, y)h(y)(dy)

s A(x)

and note that by monotone convergence,

lin "™ h(x) = TLh(x)

for any nonnegative function h. Moreover, for any h : S — [0, 1], we have that I‘g:m)h(x), Iih(x) €
[0, 1], and therefore, the bounded convergence theorem gives

lim [ (P0) g () u(dx) = /
m /00 S S

(ra)* ( tin g2 ) Gutax) =

m ‘oo

This completes the proof. m

We are now ready to give the proof of Theorem 4.6.

Proof of Theorem 4.6. To start, note that

P; ({r <o }u{rt <of})
<{P; (77 <o) + P ({77 > o} {7 <0 }) F 1 Q) + 1(2,0),

where the event €2, ,, is defined in the statement of the theorem. To analyze the two probabilities,
define G, to be the sigma-algebra containing all the information of the exploration process of the
in-component of vertex ¢ up to the end of Step m and including the identity of the active node
T, .1, and let G be the sigma-algebra containing all the information of the exploration process of
the in-component of vertex i up to Step o, , and of its out-component up to the end of Step m,
including the identity of the active node T:;H; note that G, C G for all 0 < m < o, and any

r > 0. Next, for any r > 1 define the events

E- = {1 +]A | <k},
ES = {7+ A7 <k},

C;(r)= max |Zi — Yl + max  Zu+2Z5;=0p,
JEn] i gt VA, UL, JjeA Ul
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Cj(r) = max |Zij — Yij| +  max  Z + max Z5 =0
jeln],jg{i}ul~_ UA™_UAT uIt | jeAt jurt | Je{iYUI™_UA™_
%k K %k %k

Now, use Remark 4.5 to obtain that on the event £, ,,,

P (1~ <op) + P ({7~ >0y n{rt <o)

:é{Pi(r:T_ <o) +Pi({rT” >0 bn{r=7"<0/})}
< zk:lm (T— > = 1A 49,5, (Cy (r))c>
EY B (7 ot A £, B, ()
=
_ Y’;Ei 1 > 1= 1,47, # 2, B )P ((Cp (7)) 6|

k
+3E [1(7— >0, Tt > r— 1A £ @, B )P ((c;(r))c

r=1

G.)].

To analyze the two conditional probabilities in the last expressions, note that the union bound and
the independence of the {U;; : 1 <i,j < n} from everything else give

P((Cp()]6,) < > B( 2,0 —Y;p | >0T)  (413)
Jemlj¢{Tr JUA_ VI,
+ > P(Z, - > 0|T;), (4.14)
Je{T JUA,_ Ul
and
P((Ch )| Gh) < > P(Zgs ;= Yee )| > 01T7)  (4.15)

JEMJE{TT YOI VA~ UAT  ULE
Tk Tk
+ > P(Zp+ ;> OT,). (4.16)
je{T;Fyur—_uA—_uAt urt
Tk Tk
To analyze (4.13) note that on the event Bj; we have that (1—6)(]](»?) < pg»?) < (1 +e)qj(-?) < (1+e)e <
1, which implies that on the event Bj; we have

P(Yji = Zsil > 0) = (05 —ri Nl > i)

J Ji
—_plmem) _p(mm) ,
(e - e <l <l
(m,m) (m,n) (m,n) (m,n)
+(1— pg-?) —e )1(]?5-?) <l—e5 Y+l—eTit —e ' 7«](,;”’”)
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() _ (ma)yg  (0) o (man) (n) _, (mm) ) ()
(pj’L j’L )1(p]1, >7ﬂ )+(p]1, - _]1, )1(]‘_6 ] <p]1 j’L )

m,n n n _ (.T”’") .
+(T](Z & pgz)) (pﬁl) <l-—e Tji )+(Tj(z ) ))2

= [ — ) 4 ()2,

where we have used the inequalities e —1 < —z+22/2,1 —e® <z,and 1 —e™% — e %z < 2%/2

for x > 0. It follows that if we let q](.;n’") = km (X, X;)/n, then, on the event 2, ,,, where we have

(1- )qj(ln < r(m " < <(1+ e)qj(-;n’n), we have
P(|Yji — Zji| > 0)1 <B~>
< (rpﬂ P ) 1Bs)
< (10" qj)\ ) = g g =T 4 (14 92 (™)) 1By)

<eqi? +qf) = e + (14 €)? eqj(-i "
< (14505 — g,
On the other hand, note that on the event €, ,, we have
B(1Yyi — Zi > 0)1(BS) < P(Vyi + Zs > 0)1(BE)
< min {1, + " h 1085

< (L+ 9 + 1B =: Ba(X;, X,).

Hence, on the event €y, ,, (4.13) is bounded from above by

(n) (m.n)

3 {(1 +56)q) — g } v 3 Ba(X;, X )

JE[n] JE],jg{T YUA_ Ul _,

< (145N, (Xp) — A (X ) + S Ba(X;, Xy ),

J€n)ig{Tr YUA _ Ul
where we have used the observation that » 7, q](»?) =\, (Xi)and 307, qu = [ Em(y, Xi) pin(dy) =
To analyze (4.14), note that on the event €y, ,,
L(man)

P(Z;; > 1) =1-e5 <ri™ < 1+ 1(Bs) + (1+€)q"™M1(BS) < 26 + B, (X;, X,).

We have thus obtained that, on the event £2,, ,,

P((Cp)

Gr1) < (14 50X, (Xp) = A (X ) + 3 Ba(X, Xy )

™
J€n]i¢{Tr YUA, _ Ul

+ 3 (26 + Ba(X, X))

Je{T JUA_ Ul
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< (L+50)A, (X ) = A (X )+ 2 (T UA UL |+ ) Ba(X, X0 ).

j€ln]
The same arguments yield that, on the event €, ,, (4.15) is bounded by
(1+56) Ay (X)) = Ay (Xpt) + > Bn (X7t X;),
j€n].i¢{T+ }UI;: UA;k_ vAt oLt
and (4.16) is bounded by
3 (2¢ + Bu(Xy. X;))

JE(TT YOI _uA~_uAl ULl
k k

Hence, on the event £y, p,

P ((c;j)c

1) S (L 5OX (X)) = A (Xp) + 26

—i—ZB T+X

JEMN]

{TF U I;; U A;k_ UAT UL,

To simplify the notation, define the functions:

g'r;,n,e(xl) = min ¢ 1, (1 + 56))‘1;(Xl) - )‘r_n,n(Xl) + Z Bn(va Xl) and
Jj€n]

Imnne (K1) = min ¢ 1, (14 5e)AF (X)) = ML (X0) + D Ba(X, X5) ¢,
JEn]

and note that by using the inequality min{1l,z + y} < z + min{1, y}, we obtain
— (&

P((C;)
P((Cf)°

It follows that on the event 2, , we have

gg—l) < G, (Xp-) + 2€ HT7YuA, Ul | and

1) < G (Xge) + 2

{T;F} Ul UA;; UAF UL,

Pi(r <op)+P({r~ > o 3n{rt <of})

k
< ZEZ |:1(T_ >r— 17A;—1 7& ngTfl) <g;z,n,e(XTr_) + 2¢ ‘{Tr_} U A;—l U I;—ID}
r=1

k
+2Ei[1(7 >0, 7t >r—1, A" | #9,E_4)

r=1

1)

: (gﬁn,e(xﬁ) +2e|{TFYUl_UA— UAT  ULL
I Ok
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IA
M-
=
=
K
S
)
YoumnS
Na
3
3
ol
_l_
DO
)
?A
—

< 4ek? + 2¢kE; [ I |+ ‘AA ]
%k Ik
k k
DB WA # @) e (Xg) | + DB (1AL # @)g8 e (Xz0)]
r=1 r=1

where Tr_ and Tﬁ are the identities of the rth “active” nodes to be explored in the inbound
and outbound multi-type branching processes, respectively, and c},f = inf{t > 1: |AF| + || >
kor Af = &},

Next, use Lemma 4.9 to obtain that for » > 1,

» — r—1 m,n
Ei 1AL # 2)gmme(Xm)| <3 ( ] )2”5(r<_ ) g (X0)

and

r—1
A— r—1 r—1—s/(m,n)\s
B (104 2 @ Xp)] < X (7 )2 g 0,

s=0
where F(_m’n) and Fsrm’") are the linear integral operators defined in Lemma 4.9.

Averaging over all 1 < i < n and using Lemma 4.7 to bound n~* Yoo E; Hfg_k_‘ + ‘AA_

9

[ we

obtain
fZ (1" <op) + B (77 > 0 )N {7 < 07})) Hmn)

< dek? + 2ek? (1 + sup A ))
xeS

m 35 (7 )2 L O + [ 0

The upper bound for the limit of H(n,m,k,€) as n — oo is given in Lemma 4.10. This completes
the proof. m

As a last proof in this section, we use Theorem 4.6 to prove Theorem 3.4, the result establishing
the limiting distribution of the degrees in G, (x(1 + ¢5)). The latter can also be proven directly
using similar arguments as those used in the proof of Theorem 4.6, but we choose to do it this way
to avoid repetition.
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Proof of Theorem 3.4. Let
D;Z = ZYﬂ and D;{’i = ZYij
i i
and define

n n
ZT;Z:ZZJ'Z' and Z:,Z:ZZU,
j=1 j=1

. . . m,n
where Z;; is Poisson with mean Tj(i )

_(p- - pt + - ot
(D mer Do, ) = (Dm& ~ Zng Dpg — me) + (an’ Z, ) :

where since 377, J(:n ) = \m )( X;) and Y

5 . . . ~(m,n
and Z;; is Poisson with mean rgj ), Then,

=1 zjm ™ = )\(m)( X;), we obtain that

1o e ™ ( MX))E e XN (X))
+ _ 1 ) +

(m) (m)
5 e <x><A£m><x>>’ﬂe—A+ B eo)
s k! 1!

p(dx)

for any k,l > 0, as n — oo (by the bounded convergence theorem). Moreover, by Theorem 4.6,
1 n
— — + + _ - - + <« 4t
P (ypm€ — Z |+ D~ Z e > o) =~ ;m ({r~ <or}U{rt <of}) < H(n,m,1,¢)
1=

for any 0 < € < 1/2. Therefore, for (Z(_m ),Z(’:n )) constructed on the same probability space as
(an,z ) with Z-

(m) and Z(+ ) conditionally independent (given X) Poisson random variables
with parameters Alm )( X) and )\(m)( X), and X distributed according to u, we obtain that

hmsupP<|D Z(;L)|—|-|Dn Z+)]>O) < limsup E [H(n,m,1,e) A1) = H(m, 1,¢),

n—oo n—oo
where lim,;, 7o lime g ﬁ(m, 1,€) = 0 by Lemma 4.10. Taking the limit as € | 0 followed by m  co

and noting that (Z(;n), Z(J;n)) —(Z,Z%) a.s., where (Z~, ZT) are conditionally independent (given

X) Poisson random variables with parameters A_(X) and Ay (X), gives the weak convergence
statement of the theorem.

To obtain the convergence of the expectations note that

E[D;d = E[D:{é] = %E ZZPYZ) — //52 K(x,y)p(dx)p(dy)

i=1 j=1

as n — oo by Assumption 3.1(d). Now note that

J L rxyntaxintay) = BA- (X)) = B (X)) = (2] = E[Z7).

This completes the proof. m
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4.3.2 Size of the Largest Strongly Connected Component

This last section of the paper contains the proof of Theorem 3.10, the phase transition for the
existence of a giant strongly connected component. As mentioned earlier, the idea is to use The-
orem 4.6 to couple the exploration of the graph G, (k(1 + ¢,,)) starting from a given vertex with
a double tree (7, (km), T, (km)) for a kernel k,, that takes at most a finite number of different
values.

Recall from Section 3.3 that (7, (#;x), T, (x;x)) denotes the double multi-type Galton-Watson
process having root of type x € S, and whose offspring distributions are given by (3.1). Let p?k(m; X)
(respectively, pik (k;x)) be the probability that the total population of 7, (k;x) (respectively,
7. (k;x)) is at least k. Define also p_(k;x) (respectively, py(;x)) to be its survival probability,
i.e., the probability that its total population is infinite. The averaged joint survival probability is
defined as

o(x) = /S oo (3 %) p— (i ) ().

Similarly, for any k € Ny, we define p=* (k) = [ pfk(n;x)pﬁk(/ﬁ;x)u(dx).

In addition, we will require from here on that the kernel «,, be regular finitary (see Definition 3.9)
and quasi-irreducible (see Definition 3.8). The following lemma is taken from [5] and it provides
the existence of a sequence of partitions {_#,,}m>1 of S over which we can define a sequence of
regular finitary kernels.

Lemma 4.11 (Lemma 7.1 in [5]) There exists a sequence of partitions { Zm : m > 1} of S,
with 7y = {jl(m), . ,\7]5/‘,7:3}, such that
i) each Ji(m) is measurable and ,u((?ji(m)) =0,

ii) for each m, Fmi1 refines Zp,, i.e., each \Yi(m) = Ujelfm) jj(mﬂ) for some index set IZ-(m),
i1i) for a.e. x € S, diam(jgg))) — 0 as m — oo, where 9(x) = j if and only if x € jj(m).

Before we construct the sequence of quasi-irreducible regular finitary kernels that we need, we define
for notational convenience the following relation.

Definition 4.12 Let & be a kernel on S x S and let ¢ = {J1,...,Ju} be a finite partition of
S. Then, we say that set A C S is inbound-accessible (respectively, outbound-accessible) from
x € S with respect to (K, 7 ), denoted x — A (respectively, x <— A), if there exists {u1,...,ur} C
{1,..., M} such that:

i) R(x,y) >0 for ally € Jy,,

i) k>0 on Ju; X Juyy, (respectively, k>0 on Ty, ., X Tu;) for all 1 <i <k,
i11) p(Jy,) >0 for all1 <i <k, and
i) Ju, C A.
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Remark 4.13 Note that if we take ¢, = {jl(m), cel ‘71\(2;)} as constructed in Lemma 4.11, and
we let Ry, satisfy Rm < Rmy1 a.e., then if x = A (x < A) with respect to (Rmg, Pm,) for some
mo > 1, then x — A (x <~ A) with respect to (Fm, Zm) for any m > my, since each ju(im) in part
(iii) of Definition 4.12 must contain at least one subset .7t(m+1) C ju(:n) with u(jt(mﬂ)) > 0.

We now give a result that states that we can always find a sequence of quasi-irreducible regular
finitary kernels which converges monotonically to x and can be used to approximate from below
k(1 + ¢p). Its proof follows that of Lemma 7.3 in [5], with some variations due to the directed
nature of our kernels.

Lemma 4.14 For any continuous kernel k and any @, satisfying Assumption 3.1, there exists a
sequence {Rm tm>1 of reqular finitary kernels on S x S, measurable with respect to F, with the
following properties.

a.) km(X,y) /' K(X,y) in probability as m — oo for a.e. (x,y) €S xS
b.) Fm(x,y) < infr>m £(%,y)(1 + @n(x,y)) for a.e. (x,y) €S % S.

c.) If k is quasi-irreducible, then so is Ky, for all large m.

Proof. We may assume that x > 0 on a set of positive measure, as otherwise we may take k., =0
for every m and there is nothing to prove. We will construct the sequence {k,, : m > 1} in two
stages. First, we construct a sequence {f,, : m > 1} where each &, is regular finitary and satisfies
conditions (a) and (b); then we use this sequence to obtain {k,, : m > 1} satisfying (c).

To this end, construct the sequence of partitions {_#, }m>1 according to Lemma 4.11 and define
- . I . root NN m) (m)
K/m(XaY) := inf {H(X Y ) A nlgan(X Y )(1 + Qpn(x Y )) tX € ‘719()()7 Yy € jﬂ(y)} :
Note that the properties of {_#,, : m > 1}, and the assumption on ¢, imply that
RFm(x,y) /' k(x,y) in probability asm — oo, forae. (x,y) €S xS.
Moreover, for n > m we have that

Fm(x,y) < k(x,y)(1 + on(x,y)) for a.e. (x,y) € SxS.

Hence, Ky, = Ry, satisfies conditions (a) and (b) in the statement of the lemma.

To prove (c) assume from now on that « is quasi-irreducible. In fact, without loss of generality we
may assume that k is irreducible, since it suffices to construct k,, to be quasi-irreducible on the
restriction &’ x 8§’ where « is irreducible and then set it to be zero outside of &’ x &'.

The first step of the proof ensures the existence of a directed cycle C C S for some m; > 1. The
second step uses C to construct a set on which &, is irreducible. To establish the existence of C,
note that if %, = 0 a.e. for all m > 1, it would imply that x = 0 a.e., which would contradict the
irreducibility of k. Therefore, there must exist some my > 1 and indexes 1 < r,s,t < M,,, such

that R, > 0 on (jt(mo) X Jr(mo)) and on (j,a(mo) X Js(mo)), with u(‘ﬂ(mo))u(‘ﬂ(mo))u(ﬂ(mo)) > 0.
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Claim: for any set A C S for which there exists a set D C § such that u(D) > 0 and Fpy, > 0
on D x A (respectively, A x D), the sequence of sets {B,(A4)}m>1 (respectively, { B (A)}m>1)
defined according to By, (A) = {x € S:x = A w.r.t. (Fm, Fm)} (respectively, By, (A) = {x € S:

X Awrt. (Rm, Zm)}) satisfy: 1) By, (A) C ~Bm+1(A) (respectively, By,(A) C Bpy1(4)), and
2) p(Up—y Bm(A)) =1 (respectively, U (Ufnozl Bm(A)) — 1>.

To prove the claim note that Remark 4.13 implies (1). To see that (2) holds, let B(A) =
U®_, B(A) and note that from the definition of B(A) we have x = 0 a.e. on B(A)¢ x B(A), and

m=1
the irreducibility of x implies that either pu(B(A)¢) = 0 or u(B(A)) = 0; since u(B(A)) > u(D) > 0,
it must be that u(B(A)¢) = 0, which implies that u(B(A)) = 1. The symmetric arguments yield

the claim for {B,,(A)}.

Now apply the inbound part of the claim to A = Jr(mo) and D = jt(mo) to obtain that there
exists my > mg such that pu(Bp, ( mo)y 4 7 (mo)y > 0, which in turn implies there exists a set
js( c gimo) such that M(J(ml)) > 0and x — 7™ for all x € Ty (m1) T other words, there exist
sets {juml), . uk } satlsfymg (T ( )) 0forall 0 <i<k, j(ml) j(ml) ju C jrmo ,
and R, > 0 on jum X juﬁl for all 0<i< k Since 0 < Ry < R, ON jukml X jIEQ“) by
construction, we have that the set C = UZ 0 Ju deﬁnes a directed cycle.

Next, construct the sequences {Bp,(C)}m>1 and {B,(C)}m>1 according to the claim, and define
Km(X,¥) = Fm (X, ¥)1(x € (Bn(C) N Bm(C)), y € (Bn(C)N Bm(c)))

Note that x,, / k in probability as m — oo since &,, /* k in probability and

M(U(Bm(C)mBm(C)>>1— (ﬂB >—u<ﬂém(c)0)_

m=1

It remains to show that r,, restricted to (B, (C) N Bp(C)) X (Bm(C) N Byy(C)) is irreducible. To
see this, let A C (B,,(C) N B (C)) and suppose iy, = 0 on A x (A°N By, (C) N B, (C)). Note that
since Ky,, > 0 on each ju(i Yo julﬂ , then it must be that either C C A or C C A°. Suppose that
it is the former, and note that for any x € A°N B,(C) N By (C) there exist indexes {vy,...,v;} and
{w1,...,w;} such that

fomy > 0 on J™) x gm0 < <1, (M) >0,1<i<1, g™ Cc,

Vi1 ?
and
Ry > 0 on M) x J5M, 0 < <, p(F8™) >0, 1< < j, Jm) ¢,

Wi41
where 7" = 7 = 747 Moreover, (757 > 0 would imply that 7™ C Byu(C)N By (C)

forall 1 <i<[and j(ml C Bpu(C)N By (C) for all 1 < h < j, since they would all lie on a directed
cycle of positive measure, but this contradicts our assumption that %,,,, =0 on A x A°N B, (C) N

B (C). Hence, it must be that ,u(j(ml ) = 0 for all x € A°N B,,(C) N Byu(C), and therefore,

(A€ N By (C) N Bp(C)) = 0. The same argument gives that if C C A°N By (C) N B (C) then
wu(A) = 0. We conclude that k, restricted to (B, (C) N By, (C)) x (Bm(C) N By, (C)) is irreducible.
This completes the proof. m

The following lemma establishes the relationships between p(k,,), p=F(km), p=* (), and p(k).
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Lemma 4.15 Let {km}m>1 be a sequence of kernels on (S, u) increasing a.e. to k. Then, the
following limits hold:

a.) p2F(r;x) \y p(k;X) for a.e. x and p=F(k) \( p(k) as k — occ.
b.) For every k > 1, p2¥(kpm;x) 2 p2F(k;x) for a.e. x and p=* (k) 7 p2F (k) as m — oo.

c.) p(km;x) 7 p(k;x) for a.e. x and p(ky) / p(k) as m — 0.

Proof. By Lemma 9.5 in [5], we have that p?rk(/i;x) N o4 (kix) and p=F(k;x) N\, p_(k:x) as
k — oo for a.e. x. Then, by the monotone convergence theorem, we have

lim p7*(k) = lim [ p3"(r;8)p=" (5;5)(ds)

k—o0 k—oo Jg

—/ lim pfk(n;s)pik(fﬁs)ﬂ(ds)
S

k—o0
= [ pts)o-(rssutas) = o).

which establishes (a).

By Theorem 6.5(i) in [5] we have that for any fixed k¥ > 1, pik(lim; x) S pik(/{; x) and p=F (kp; x) S
p="(k:x) as m — oo for a.e. x, which together with monotone convergence as above implies (b).

Part (c) follows from part (a) applied to the kernel &,,, followed by part (b), to obtain that

i -x) = 1 i 2>k ‘x) = [ i >k -x) = [ 2k x) = .
e P ) = I, I, P i) = i, i, 7 i) = i P (s 2) = ol )

for a.e. x. Then use monotone convergence as above. m

Recall the definition of the operators T and T, given in Section 3.3, as well as of their spectral
radii r(7);) and r(T.}). The strict positivity of p(x), which ensures the existence of a giant strongly
connected component, is characterized below. As a preliminary result, we establish the phase
transition for regular finitary, quasi-irreducible kernels first.

Proposition 4.16 Suppose that & is a reqular finitary, quasi-irreducible, kernel on the type-space
S with respect to measure . Then, 7(TS ) = r(TF) and we have that p(k) > 0 if and only if
r(T.) > 1. Moreover, there exist nonnegative, non-zero eigenfunctions f_ and fi, such that
T f- =r(T:)f- and TS f+ = (T f+, and they are the only (up to multiplicative constants and
sets of measure zero) nonnegative, non-zero eigenfunctions of T, and T;:r , respectively.

Proof. Since k is quasi-irreducible, there exists $* C S such that & restricted to S* is irreducible
and u(S*) > 0. Also, since & is regular finitary, there exists a finite partition {J; : 1 < i < M}
such that & is constant on J; x J;. Next, define

M
S'=J{Fns : w(Jins*) >0},
i=1
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and define the kernel #/(x,y) = pu(S")R(x,y) for x,y € S’. Note that £’ is regular finitary and
irreducible on 8§’ and p(S’) = u(8*). Moreover, if we let ' (A) = p(A)/u(S") for A C &', and let
{J! :1<i < M'} denote the partition of S’ such that £ is constant on J x JJ, then p/(J/) > 0
foralll <i< M.

Next, consider the double tree (7, (x), 7:7(/1’ )) on the type-space S’ with respect to measure p'.
Note that each of these trees can be thought of as a multi-type branching process with M’ types
(one associated to each of the J/) each having positive probability. We will show that:

a.) the survival probability p(&) = u(S8")p'(k’), where
§) = [0 (5300, (' 30 (),

and p_ (r';x), p/y(k';x) are the survival probabilities of the trees 7, (x';x) and ’7;;(11’ i X),
respectively; and

b.) the spectral radii of the operators Téﬁ on S and Tj on &' are the same.

c

To prove (a), note that since types x € (S§*)¢ are isolated (since #(x,y) = 0 for x € (§')° or
y € (8')°) and §*N(8’)¢ has measure zero, then they do not contribute to the survival probabilities
of 7,7 (&) and T,f (%), which implies that

o(7) = /5 (s %) p— (s %) () = u(S) / (s ) p— (s )1 ().

/

Now note that the trees ’7;1(/%) and 7;;:(/1’ ) have the same law when their roots belong to &’ since

the number of offspring of type y € &’ that an individual of type x € S’ on the tree ’7;7(/4 ) has, is
Poisson distributed with mean

[l x) = [ ity o) S = [l xn(ax),

which is equal to the corresponding distribution in 7,(%). The same argument yields the result for
7.5 (%) and 7:?(/4) Hence, we have that pi(k;x) = p+(k';x) for x € §’, and therefore,

p(R) = u(S")p' (K).

To establish (b), note that if f is the nonnegative eigenfunction associated to r(T,jf) on &', then
fr(x) = fL(x)1(x € &) satisfies

(T 1900 = [ Ry f-@nty) = [ w530 (7)) = (L) (x) = r(T)f- ()
for x € &', while for x € (§)¢ we have (T, f-)(x) = 0 since i&(y,x) = 0 for all y € S. Therefore,
r(T_,) is an eigenvalue of 7% , which implies that r(T,) < r(T% ); similarly, r(7.;) is an eigenvalue
of T and r(T,:C ) < r(TZ). For the opposite inequality, suppose fi is a nonnegative eigenvector
associated to r(T) and set f} to be its restriction to S’. Then note that for x € S,

(T = [

!

K (y,x) fL(y)p/ (dy) = L%(ym)f—(.V)M(dY) = (T ) f-(x) = (T ) fL (%),

43



and therefore, r(7 ) is an eigenvalue of T, and therefore »(T; ) < »(T_). Similarly, r(TF) <
r(T4). We conclude that
r(TéE) = r(Tj).

To see that r(T_) = r(T,) we first point out that 7;7(/4) and 7;;(/1’) can be thought of as
irreducible multi-type Galton-Watson processes with a finite number of types and mean progeny
matrices M~ = (m;;) and M = (m;;), respectively, where m;; = c;ip/(J}), m:; = ciji'(J}), and
K(x,y) = Zf\il Z]Ail cijl(x € J/,y € J;). Moreover, the operators T, and T satisfy

ij = M*v for v=(v1,...,o0)" € RM and f(x) = v;1(x € J}), x € §'.

That M~ and M* have the same spectral radius follows from noting that M~ = CD and M™* =
CTD = (DC)T for D = diag(y/(J7), - .., W (J4;)) and C = (c;j), which implies that the eigenvalues
of M are the complex conjugates of those of DC, which in turn are the same as those of CD.

The if and only if statement for the survival probabilities now follows from Theorem 8 in [2] (see
also Theorems 2.1 and 2.2 in Chapter 2 of [24]), which states that

Ple(k';x) >0 for all x € & if and only if ~ r(M¥) > 1,

where r(M*) = T(Tj,) is the spectral radius of M.

The existence of the eigenfunctions f_ and f; on S follows from the Perron-Frobenius theorem
(see Theorem 1.5 in [32]), which guarantees the existence of strictly positive eigenfunctions f’ and
f. on & such that iji = T(Ti)fi, by setting fi(x) = fL(x)1(x € §’). Moreover, f’ and f! are
the only (up to multiplicative constants) nonnegative, non-zero eigenfunctions of the operators 7.,
and T,:C , respectively. To see that the nonnegative eigenfunctions f_ and f; are also unique (up to
multiplicative constants and sets of measure zero) note that any other nonnegative eigenfunction
g— of T associated to a positive eigenvalue A would have to satisfy

(T59-)(x) = /5 Ry, x)g—()u(dy) =0 for x € (8%,

since k(x,y) = 0 for x € (§*)¢, and
(Tg 9-)(x) = / Ry x)g-()i'(dy) = Ag-(x)  forx €S’

which would imply A is a positive eigenvalue of T, with a nonnegative, non-zero, eigenfunction.
The uniqueness of f” then gives that g_(x) = af’ (x) for x € &’ for some constant a > 0. Finally,
since u(S* N (8)¢) = 0, we conclude that g_(x) = af_(x) a.e. The same arguments give that
any other nonnegative eigenfunction g4 of T2~ would have to satisfy g4 (x) = Bf4(x) a.e. for some
constant 8 > 0. This completes the proof. =

We now use the regular finitary and quasi-irreducible case to establish the result for general irre-
ducible kernels. As pointed out in Remark 3.12, the result does not provide a full if and only if
condition for the strict positivity of p(k), since when the operators T); and T, are unbounded we
cannot guarantee the continuity of the spectral radii of the sequence of operators 7, and ij.
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Lemma 4.17 Suppose that k is irreducible on the type-space S with respect to measure p. Then,
if p(k) > 0 we have r(T;) > 1 and r(T;7) > 1. Moreover, if there exists a reqular finitary quasi-
irreducible kernel & such that i < k a.e. and r(T= ) > 1 (equivalently, r(T=) > 1), then p(k) > 0.

Proof. Suppose first that p(x) > 0. Now use Lemma 4.14 and Lemma 4.15 to obtain that
p(Km) > 0 for some quasi-irreducible, regular finitary, kernel k,, such that rkn,(x,y) < k(x,y)
for all x,y € §. By Proposition 4.16 we have that the spectral radii of the operators T, ~and
T,; satisfy v(T ) = r(T,} ) > 1. By monotonicity of the spectral radius, we conclude that
r(T7)>r(T, )>1and r(TF) > r(TF ) > 1.

For the converse, note that if & < x a.e. and (7T, ) > 1, then by Proposition 4.16 we have that
p(R) > 0. Since p(k) < p(k), the result follows. m

The last preliminary result before proving Theorem 3.10 provides the key estimates obtained
through Theorem 4.6, since it relates the indicator random variables for each vertex i to have
in-component and out-component of size at least & with the corresponding probabilities in the
double-tree (7, (km; Xi), T, (Fm; Xi)).

Proposition 4.18 For any k > 1 and i € [n], define XTZLI: to be the indicator function of the event
that vertex i has in-component and out-component both of size at least k in the graph G, (k(14vy)).
Then, for any 0 < e < 1/2, we have

1 — 1 «
=S B[] = D i X3 (ms X)
=1 =1

1 Z e (- [2)) (- B [x2))] < Konm,b) + 3800, m, ko),

S H(n7m7 ka 6)7

where

4 1)1
Ak +1)logn Sup fim(x,y) + Ogn <2 +sup A" (x) + sup A" (X)> ’

K(n,m,k) := ]
X,yE€S xeS xeS

and H(n,m,k,¢€) is defined in Theorem 4.6.

Proof. To derive the first bound construct a coupling between the graph exploration processes of
the in-component and out-component of vertex i and the double tree (7, (km; Xi), T," (km; X;)), as
described in Section 4.3.1. Define 7~ and 77 to be the steps in the construction when the coupling
breaks on the inbound, respectively outbound, sides, and let o, = inf{t > 1 : [A |+ [[; | >
kor Ay =@} and o} =inf{t > 1: |A]|+|[;'| > k or A} = @}. Note that at time o V o} it is
possible to determine whether both the in-component and out-component of vertex ¢ have at least
k vertices or not. To simplify the notation, let p=*(km;x) = p=" (Km; X)pfk(/ﬁm; X).

1 n 1 n
>k >k
- E 1:E [Xr_m} =—> P (Xa@- = 1)
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| A

- ZIP’ (both 7, (km; X;) and T, (km; X;) have at least k nodes) + H(n,m, k, ¢)

= Zp>k Km; Xi) + H(n,m, k,e),

where we used Theorem 4.6 to obtain that n™* > " | P; ({r~ <o, }U{r" <o/}) < H(n,m, k,e).

The other direction follows because
1§Mﬂqliwg=“>fﬁ>@
n 4 - n,i n 4 ? n,% ’ = Yk ="k
i= =

 (km; X;) and 7L+(nm; X;) have at least k nodes)

v
\

v
3 |-
A
o
E
E?

_ﬁZPi ({7'_ <ak_}u{7‘+ <a,;F )

v

1 n
— g pzk(ﬁm;Xi) — H(n,m,k,e).
n S

For the second inequality, first note that

2 2 st - [iat]) (i) - izt

i=1 j#i
- YTl - > S E[ el
i=1 j#i 1=1 j#i

To estimate E [Xflfx?;] we will assume that we first explore the inbound and outbound neighbor-

hood of vertex i up to the time both its in-component and out-component have at least k vertices
or there are no more vertices to explore, i.e., we will explore the in-component of vertex ¢ up to
time oy, and its out-component up to time O'Ij,i. Note that we have added the subscript i, relative
to the notation introduced in Section 4.3.1, to emphasize that the exploration starts at vertex 4.
Next, define Fj; to be the sigma-algebra generated by the exploration of the in-component and
out-component of vertex i, as described in Section 4.3.1, up to Step ) on the inbound side and
up to Step a,ii on the outbound side. Define /\/Z-( = I++ U I_ UA— U A+ to be the set of

) k: 7 k: i k i
vertices discovered during that exploration. Now explore the in-component and out-component of

vertex j, as described in Section 4.3.1, up to Step 0y j on the inbound side and up to Step J,jj on

the outbound side; let A/;(k) be the corresponding set of vertices discovered during the exploration
of vertex j.

Define Cj; = {M(k) ﬂ./\fj(k) = @} and note that,
E[aixat] <EGNGE1CH)] + B [UCH)] =B [GiE [ah1(Cy)| Fu] | +P(Cs).

—= n,tAn,j
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To analyze the conditional expectation, observe that

E [xa51(Cy)| Fid] = B [x35| P, Cig] PO Fi),

where, due to the independence among the arcs, we have that conditionally on F3,; and Cjj, the
random variable X has the same distribution as the indicator function of the event that vertex j
has in-component and out-component both of size at least k on the graph Gy, (kp ), with

o (Xs X1) = K(Xg, Xe) (14 o0 (X, X)) (s ¢ Nt ¢ N9,

Now note that since x,; < K(1 + ¢,,) for any realization of /\/’i(k) C [n], we have

E [an ]:kz,Cij] <E {Xfﬂ ;

from where it follows that

LYy E[ehet] < LYY ([ 5[] < rey).

i=1 j#i i=1 j#i

which in turn implies that

22 (- [e]) (- [e])] < p L e

i=1 j#i i=1 j#i

Similarly to what was done on the graph, define /(/i( = IJF+ Uiz U{ tiie A }U{T ie AJr }
ki

sz Ukz N kz
to be the set of identities that appear during the construction of the double tree

(T, (Km; Xi), 7;*‘(/@7”; X)) up to Step 0y, on the inbound side, and up to Step 51?,1’ on the outbound
side. Let C’ij = {./(fi(k) ﬂ,/\A/'j(k) = @}. We then have
P(C;) < P(Cj, 10 > 04,7, > J,”,TJ > Ul;j,T;_ > U;j)l(Qm,n) + 1 Qn)
+P({r7 <o} U {Tj <ol D +P{r <o yu{r <oi})
< 1) + PG, 1N < log m)L(Qun,n) + BUNY| > log n)
PR <00} UL < of D+ B <o UL <o),

where the event (), ,, is defined in Theorem 4.6.

To bound the first probability on the right-hand side, define ]:-k,i to be the sigma-algebra generated
by the construction of the double tree whose root has identity i, up to Step &, , on the inbound

side and up to Step c},ji on the outbound side. Now note that

Cij = {5 ¢ NP} ﬂ N {z 7 =0h [0 ﬂ N {z i, = 0
r=1 tENi(k) ‘ r=1 N(k)
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where T and T+- are the identities of the rth active nodes to have their offspring sampled in the
double tree whase root is j. Moreover, if we define By = 1, _ ¢.00{Z1s = 0} and B, = mtEN-(k){ZSt =
0}, then ' '

~At ~—
Ok, Tk,j

{j gé ,/\A/l(k)} = Bj N Bj and éij = Bj N Bj N ﬂ BT:‘] N ﬂ BT;J.

i

and therefore, since 6; I o j < k, the union bound gives

5= 5+
O'k’]. Gk,j
P(C5| Fres) <P | BSU | BSe || Fui | +P | BSU | | BGr || Frs
r=1 " r=1 "
[ Ok,j r—1
<E BC+ZI<B mﬂBTf N B )]:;“
r=1 s=1
O'k]
+E BC+21<B mﬂBT+ N B ) Fhi
r=1 s=1
k r )
<E|UBH+> 1A, . £ (T, ¢ NV, B || Frs 417
SENBD+D. (# (U, # N7 )‘ k] (4.17)

k
1(BS) +Zl ( T * e, ﬂ{ ¢/(@(k)},B%j.>‘ﬁk,i] , (4.18)
r=1 »J

where fl; j and fl;fj are the rth inbound and outbound active sets in the construction of the

double tree started at j. Now note that the event ﬂgzl{T;j ¢ /(/i(k)} implies that none of the
{U, 7 1 < s < n} have been used in the construction of the double tree started at ¢, hence

Y (k‘)}

7 I

( A e, ﬂ{ ¢N<’“}BC“”“><E[ (A, 1 # 2)QW, T)

where for any set V' C [n] and any s € [n] we define

Q(V,s) =P (U{Zts > 1}) <Y P(Ziez1)=> (1- i)

teV teV teV

< Zﬂgs ™ < FZﬁm(Xt,X < |V sup km(x,y),

tev tev " xy€es
and Ry = maxice<ar, pn(5™) > Ou(T™) /1n(T™). Since B(BS|Fis) < QU j). we
obtain that (4.17) is bounded from above by

wm(k)‘ Sup Km(X,y).

n x,y€S

IN

+ZE[ A 2)QUNN T

(/f)}
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Similarly, (4.18) is bounded from above by

R, (k+1), -
Btk T 1)) 09| upy ().
n x,yES
It follows that oR (k: 1)
fe | 2 Wk + N
P(CS|Fri) < TN sup km(x, ),

n X,yES

which in turn implies that for any i, 5 € [n],

P(C5, [N < logn) 1) = B |P(CIF ) 1IN < logn)| 1(2m.0)
4(k+ 1)1
n x,yES
and we have used the observation that on 2, , we have R, <1+¢€ < 2.

Using this estimate we obtain that

SR < oy 3 S {105, + BCG, 18] < logm) 1 () + BINY| > Togm) )

i=1 j#i i=1 j#i

FIS BT <o U <o)
=1

4(k+ 1)1 1 ~
p AR DboEn (oY) + 2 S BAP)] > logn)
n X,yeS n i1

< 1 0)

+ 2N B <o} U L <ot
=1

To complete the proof, apply Theorem 4.6 to obtain

2 n
W)+ =Y Pi{r™ <o} u{r™ <of}) <3H(nm, k),
i=1

and Markov’s inequality followed by Lemma 4.7 to get

g Y k m m
ZE [|j\fl(k)@ < Togn (2 +sup A" )(x) + sup /\Sr )(x)> .

x€eS x€eS

R -

=S PN > logn) <

n 4 nlogn “
=1 =

]

We now use Proposition 4.18 to show that the number of vertices with in-component and out-

component both of size at least k& converges in probability.

Proposition 4.19 Let R~ (v) and R*(v) denote the in-component and out-component of vertex
v € [n], as defined in Theorem 8.11. Let N7* = {v € [n] : |R™(v)| > k and |[R*(v)| > k}. Then,

n

Nz¥
| - | KR p=F(k), n — 0.
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Proof. Define {Xflf}ie[n] as in Proposition 4.18. We start by noting that for any m > 1 we have

Y E [xfﬂ - LS 2 (s X) 93 (i X)

+ |07 (k) = 97 ()

NZz¥
" n ’_ka(K)‘

| =

(4.19)

3

= (3 Xi) p3 (ki Xi) = 7 (i)

S|
Mﬁl

[y

+

~

Moreover, by Proposition 4.18 we have that for any 0 < € < 1/2, (4.19) is bounded by H(n,m, k,¢€),

where H(n,m, k, €) is defined in Theorem 4.6 and satisfies H(n, m, k, €) LR H(m, k, €) for some other
function H(m, k,€) (defined in Lemma 4.10) as n — oo, where for any fixed k£ > 1 we have

lim hmH(m k,e) = 0.
m oo €l0

Also, by the bounded convergence theorem we have that for any m, k € N, |

1~ >k k k k P
— > 07 (i Xi)p3 " (s X) = /Spé (K3 X)p3" (K X) pin (d%) = p™* () 1 — o0,
=1

and by Lemma 4.15 we have that

_ 2k,
n}gnoop ") = p~* (k)

in probability, since £, /* K in probability. Therefore, for any m > 1 and 0 < € < 1/2 we have

[NZ| INZH|

Nz 1 & >k
211 afe

=1

— pZ* (k)| < limsup A,k ) + [ () = ().

n—oo

lim sup
n—oo

n

and by taking € | 0 followed by m ,* oo we obtain that the following limit holds in probability

INZF 1 >k
1S ]

=1

— p7F (k)

< lim sup

n—o0

lim sup

‘|N>’“|
n—oo

n

It remains to show that this last limit is zero. To do this, start by using Proposition 4.18 again to
obtain that for any m > 1 and 0 < € < 1/2, we have that on the event Qy, ,,,

)
NZE 1 >k
| (% 1 e
=1 ]
n

-t e[ -efel])]+ L X (at -2 ] (35 - [

i=1 i=1 j#i
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< % Zn:E {(xi’f —E [xfﬂ)z] + K(n,m, k) + 3H(n,m, k, €)

1
< —+ K(n,m,k)+3H(n,m,k,e),
n

where K (n,m, k) is defined in Proposition 4.18 and satisfies K (n,m, k) P 0asn — oo for any
fixed m, e. The bounded convergence theorem now gives

n n

2 2
lim E ank_le[ zk} —glimE ank_le[ Zk} <3ﬁ( k,€)
n1~>nolo n n P Xn,i - ni)ngo n n — Xn,i = m,R,€),

and taking the limit as € | 0 followed by m ' oo completes the proof. =

We are now ready to prove Theorem 3.10, the phase transition for the existence of a giant strongly
connected component in G, (k(1 + ¢y)).

Proof of Theorem 3.10. By Lemma 4.14, there exists a sequence of kernels {k,, : m > 1}
defined on S x S, measurable with respect to .%, such that &, is quasi-irreducible, regular finitary,
and such that for any n > m, we have

km(X,y) < k(X y) (14 en(x,y))  forallx,y €S.

Proof of the lower bound: We will start by proving a lower bound for the largest strongly connected
component of Gy, (k(1+ ¢y )). To this end, note that we can construct a coupling between G, (x(1+
¢n)) and Gy (km) such that every arc in Gy (k) is also in Gy, (k(1 + ¢5)) P-a.s. It follows that

ICL(Gr k(1 + @) 2 [CL(Gnlrm))|  P-as.

The idea is now to apply Theorem 1 in [3] to G, (km), however, that theorem requires that the
kernel k,, be irreducible, whereas k,, is only quasi-irreducible. To address this issue, we construct
a third graph as follows. Let §* be the restriction of & where &, is irreducible and set

S = A@ {j}m’ nS*: (™) > o} .

i=1
To avoid trivial cases, assume from now on that p(S’) > 0.

Now let V,y = {1 < i < n:X; € 8} denote the set of vertices in Gy, (k) that have types in &’ and
let n’ denote its cardinality. Note that n’ is random, but measurable with respect to .%. Next, fix
0 < § < 1 and define the kernel £'(x,y) = (1 — §)u(S")km(x,y) and the graph G, (k') whose arc
probabilities are given by

@) _ (1= 0)u(S)rm(Xi, X;)

Dij; o A1, WAS [n/]7 i F ]

Note that G,/ (x) is a graph on the type space S’ whose types are distributed according to measure
wn (A) := pn(A)/pn(S’) for any A C S’. Moreover, &' is irreducible on " with each of its induced
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types, i.e., the sets ji(m) N S’, having strictly positive measure. Now note that since nu,(S’) = n’

and pi,(S”) T u(S’) as n — oo, then

) _ (1= 0)uS)rm(Xi, X)) ) (X, X)

/\1 . . / . .
’Lj nun(S/) — n b Z’j 6 [n]’ ? #]?

for all sufficiently large n. Therefore, there exists a coupling such that every arc in G,/ (x') is also
in Gy, (km), and therefore, for all sufficiently large n,

C1(Gn(km))| = |C1 (G (k)] P-aus.

Now use Theorem 1 in [3] to obtain that for every e > 0

b <' CYCHCI s

where
90) = [ 630t (5 ),
and p’_(k';x), p/, (+';x) are the survival probabilities of the trees 7, (x') and T (k'), respectively,
defined on the type space S8’ with respect to the measure p/(A) = ,u(A)/u(S’) for 4 cs.
By the arguments in the proof of Proposition 4.16, we have that p((1—8)kn) = u(S")p'(k'), where

p((1— 8)r) = /5 P (1= 6)m; X)p (1 — ) X)),

and p—((1 = 8)km;x), p+((1 — 0)km;x) are the survival probabilities of the trees 7, ((1 — 0)km)
and T, ((1 — 6)km), defined on the type space S.

Hence,

C1(Gn(s(L+ o)) o [CUGA((L = )rm))|  [C1(Gu(K))]

n - n - n'

L 0 (W) u(S') = pl(1 = 8)im),

3\3\

as n — 0o. Now use Lemma 4.15 to obtain that the following limits hold in probability

i lim p((1 = 0)fim) = lim i p((1 = 6)km) = p(k),

from where we conclude that for any € > 0,

p (a0

—p(/f)<—e>—>0 n — 0o.
n

Proof of the upper bound: For any k,m > 1 let p%k(ﬁm; X) (p_%_k(lim; x)) denote the probability that

the tree 7, (Km;X) (T, (km;x)) has a population of at least k nodes. Define for k& > 1 the set NZF

as in Proposition 4.19; N2¥ is the set of vertices in Gy, (k(1 + ¢,)) with both large in-component
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and large out-component. Now note that provided liminf,,_, [Ci1(Gr(Kk(1 4+ ¢,)))| = 0o, we have
that for any fixed £ > 1,

IC1(Gr(K(1 + @n)))| < |NZF| for all sufficiently large n.

It follows that

CLGnlr 4 el oy  INEHT ok 2Ry o).

Now use Proposition 4.19 to obtain that |[NZ*|/n il p=F(k) as n — oo for any fixed k > 1. Now
use Lemma 4.15 to obtain that p=¥(k)  p(k) as k * oo, which completes the proof of the upper
bound.

Proof of the phase transition: It follows from Lemma 4.17. m

We now prove Theorem 3.11, which provides a more detailed description of the giant strongly
connected component and of the bow-tie structure it induces.

Proof of Theorem 3.11. In view of Theorem 3.10, we know that C;(G,(k(1 + ¢,,))) contains
asymptotically np(k) vertices, and therefore, C1(Gp(k(1 + ¢,))) C L} N L,; with high probability.
To show the reverse subset relation fix 0 < § < 1 and m > 1 and construct the kernel x'(x,y) =
(1 = 6)u(S")km(x,y) on the type space S’ C S just as in the proof of Theorem 3.10, so that «’ is
regular finitary and irreducible on &’. Now construct the graph G, (x’) using a coupling ensuring
that every arc in G,/ (x') is also in Gy, (k(1 + ¢,)), as was done in the proof of Theorem 3.10. Note
that we must have
Cl(Gn’(Hl)) C Cl(Gn(ﬁ(l + ‘pn))) P—a.s.,

for some [ > 1, where C;(G,,(k(14y,))) is the lth largest strongly connected component of G, (x(1+

¢n)). Now define the sets L~ = {v € [n/] : |[R™(v)| > (logn)/n} and L} s = {v € [n] :
|[RT(v)| > (logn)/n} relative to graph G,/(x’). By Theorem 3.10 we again have that G,/ (')
contains a number of vertices of order n', with n/n’ = O(1), and therefore, C1(Gy (")) C L, 5, N

Ljn 5., With high probability. Moreover, a close inspection of the proof of Theorem 1 in [3] shows
that L, NL' o (denoted B'(w1) in [3]) is strongly connected with high probability (specifically,
see the proof of (22) in [3]). It follows that

lim P (L7 5,00 L g = C1 (G () ) = 1.

n—o0

Now note that L S Ly and LT . 2 Lt as m — oo and § — 0, which implies that, with

m,0,n m,6,n
high probability, L}f N L, C C;(Gp(k(1 + ¢y))) for some [ > 1, and therefore, L7 N L, is strongly
connected. The first sentence in the proof now implies that [ = 1, and therefore,

lim P (C1(Gn(k(1+¢n))) =Ly NL,) =1

n—0o0

To establish the limits for |L;}}| and |L,, |, let Lékn ={ven]:|R (v)| >k} and Lfkn ={ven:
|R*(v)| > k} and note that |LF| < |Lj2[kn| for any 1 < k < (logn)/n and |Lj2[kn| < |LFE| for any
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k > (logn)/n. A straightforward adaptation of Proposition 4.19 can be used to obtain

>k
’L: n| P

>k |L42»kn| P
— —>/p (k; x)p(dx) and —_—
S

L | o outax)

n n

as n — co. Monotone convergence gives [q pik(ﬁ;x)u(dx) N [ p+ (ks x)p(dx) as k 7 oo, which
yields the result. m

We end the paper with the proof of Proposition 3.13, which states the main results for the rank-1
kernel case.

Proof of Proposition 3.13. The first two statements follow immediately from noting that
Elrt+(X)EE-(X)] = [[s2r(x,y)u(dx)pu(dy).  The third one follows from noting that
A (X) = - (X) Bl (X)] and A+(X) = x4 (X) B[k (X)),

To establish (d) assume first that p(k) > 0. Now use Lemma 4.14 (applied to k(x,y) = k_(y) and
k(x,y) = K4 (x) separately) to obtain that there exists a sequence of kernels {x, (x) : m > 1} and
{k,(x) : m > 1} such that: 1) 0 < k5 (x) < ke(x) for all x € S, 2) each is piecewise constant
taking only a finite number of values, and 3) ki (x) ,* k+(x) in probability for a.e. x € S as
m — oo. Now set By, = {x € §: k,,,(x) > 0, (x) > 0} and define

Km(X, ) = £ (X) 5, () 1(X € B,y € Br).

Note that &y, is regular finitary and is strictly positive on B,, x B,,. Hence, the only set A C B,
satisfying Kk, = 0on A X (A°NB,,) is A = & or A°N B,,, = &, implying the irreducibility of x,, on
By, X Bp,. Moreover, since k_— > 0 and x4 > 0 a.e. in order for k to be irreducible, we have that
Km /" Kk in probability as m — oo.

Next, use Lemma 4.15 to obtain that p(k) = lim;,—ye0 p(km ), and therefore, p(ky,) > 0 for some m
sufficiently large. By Proposition 4.16 this implies that the spectral radii of the operators T, ~and
T+ are strictly larger than one. Now note that the functions f,, (x) = k,,(x) and f}(x) = £}, (x)
are nonnegative and satisfy

T, (%)

/ e (9 () fm (¥ () = i () / ki (9) o (y)u(dy)
S S

£ () / K () (y)uldy),

S

and therefore, rp, := |, s kb (¥) i (y)p(dy) is an eigenvalue of T, . Similarly, ry, is an eigenvalue of
T,; associated to the nonnegative eigenfunction f,;. Since we may assume that r,,(x) and &}, (x)
are different from zero for sufficiently large m, then Proposition 4.16 gives that r, = r(T7 ) > 1.
Taking the limit as m — oo gives that
Elkt(X)k—(X)] = lim r, > 1.
m—0o0

For the converse, note that F[k4(X)x_(X)] > 1 and the monotone convergence theorem imply
that rp, > 1 for some m sufficiently large. For this m, Proposition 4.16 gives that r,, is the spectral
radius of T, and T,/ , and also that p(k,,) > 0. Lemma 4.15 now gives that 1 < p(k,,) / p(k) in
probabiity as m — co. =

o4
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