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Abstract

We study the convergence of the population dynamics algorithm, which produces
sample pools of random variables having a distribution that closely approximates
that of the special endogenous solution to a variety of branching stochastic fixed-
point equations, including the smoothing transform, the high-order Lindley equation,
the discounted tree-sum and the free-entropy equation. Specifically, we show its
convergence in the Wasserstein metric of order p (p ≥ 1) and prove the consistency of
estimators based on the sample pool produced by the algorithm.
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1 Introduction

We study an iterative bootstrap algorithm, known as the “population dynamics”
algorithm, that can be used to efficiently generate samples of random variables whose
distribution closely approximates that of the so-called special endogenous solution to a
stochastic fixed-point equation (SFPE) of the form:

R
D
= Φ(Q,N, {Ci}, {Ri}), (1.1)

where (Q,N, {Ci}) is a random vector of real-valued elements with N ∈ N = {0, 1, 2, . . . },
and {Ri}i∈N is a sequence of i.i.d. copies of R, independent of (Q,N, {Ci}). These
equations appear in a variety of problems, ranging from computer science to statistical
physics, e.g.: in the analysis of divide and conquer algorithms such as Quicksort [31,
17, 32] and FIND [14], the analysis of Google’s PageRank algorithm [34, 21, 10, 26], the
study of queueing networks with synchronization requirements [25, 30], and the analysis
of the Ising model [13], to name a few. In general, SPFEs of the form in (1.1) can have
multiple solutions, but in most cases we are interested in computing those that can be
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Convergence of the population dynamics algorithm

explicitly constructed on a weighted branching process, known as endogenous solutions.
In some cases, even the endogenous solution is not unique [6], but characterizing all
endogenous solutions can be done using the special endogenous solution, which is the
only attracting1 solution, and can be constructed by iterating (1.1) starting from some
well-behaved initial distribution.

This work focuses on the analysis of a simulation algorithm that can be used to
generate samples from a distribution that closely approximates that of the special
endogenous solution to a variety of SFPEs. The need for such an approximate algorithm
lies on the numerical complexity of simulating even a few generations of a weighted
branching process using naive Monte Carlo methods. The population dynamics algorithm,
described in §14.6.4 in [29] and §8.1 in [2], circumvents this problem by resampling
with replacement from previously computed iterations of (1.1), i.e., by using an iterative
bootstrap technique. However, as is the case with the standard bootstrap algorithm,
the samples obtained are neither independent nor exactly distributed according to the
target distribution, which raises the need to study the convergence properties of the
algorithm.

Before presenting the algorithm and stating our main results, it may be helpful to
describe in more detail some of the examples mentioned above. Throughout the paper,
we use x∨y = max{x, y} and x∧y = min{x, y} to denote the maximum and the minimum,
respectively, of x and y.

• The linear SFPE or “smoothing transform”:

R
D
= Q+

N∑
i=1

CiRi, (1.2)

appears in the analysis of the number of comparisons required by the sorting
algorithm Quicksort [31, 17, 32], and can also be used to describe the distribution
of the ranks computed by Google’s PageRank algorithm on directed complex
networks [34, 21, 10, 26].

• The maximum SFPE or “high-order Lindley equation”:

R
D
= Q ∨

N∨
i=1

CiRi, equivalently, X
D
= T ∨

N∨
i=1

(ξi +Xi), (1.3)

arises as the limiting waiting time distribution on queueing networks with parallel
servers and synchronization requirements [25, 30] and in the analysis of the
branching random walk [2].

• The discounted tree-sum SFPE:

R
D
= Q+

N∨
i=1

CiRi (1.4)

appears in the worst-case analysis of the FIND algorithm [14] and the analysis of
the “discounted branching random walk” [7].

• The “free-entropy” SFPE:

R
D
= Q+

N∑
i=1

arctanh(tanh(β) tanh(Ri)) (1.5)

1The attracting solution is the unique solution under iterations of the map µn+1 = T (µn) for all µ0 with
sufficiently many finite moments, where T (µ) is the distribution of Φ(Q,N, {Ci}, {Xi}) where the {Xi} are
i.i.d. with distribution µ.
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Convergence of the population dynamics algorithm

characterizes the asymptotic free-entropy density in the ferromagnetic Ising model
on locally tree-like graphs [13]. In this case, Ci ≡ tanh(β) for all i ≥ 1, β ≥ 0

represents the “inverse temperature”, and Q the magnetic field.

• Although the analysis presented here does not directly apply to this case, we
mention that the population dynamics algorithm can also be used to simulate the
fixed points of the belief propagation equations on random graphical models [29]:

R
D
= Φ

(
Q,N, {Ci}, {R̃i}

)
and R̃

D
= Ψ

(
Q̃, Ñ , {C̃i}, {Ri}

)
,

where the {R̃i} are i.i.d. copies of R̃ independent of the vector (Q,N, {Ci}) and
the {Ri} are i.i.d. copies of R independent of the vector (Q̃, Ñ , {C̃i}), with Φ and Ψ

potentially different.

We refer the reader to [2] for even more examples, including some involving minimums.
Almost sure convergence results for our algorithm in the non-branching (N ≡ 1) linear
case (1.2) have been previously given in [1]. However, our emphasis here lies on the
branching (P (N > 1) > 0) case where the need for efficient computational methods is
even more critical.

The existence and uniqueness of solutions to any of these SFPEs is in itself a non-
trivial problem. We refer the reader again to [2] for a broad survey of known results
and open problems on this topic. The most studied equations are the linear (1.2) and
maximum (1.3) SFPEs, which have been extensively analyzed in [27, 19, 3, 5, 6, 4, 20]
and [8, 24, 28], respectively. However, to provide some context to where the population
dynamics algorithm fits in, we briefly mention that the existence of solutions is often
established by showing that the transformation T that maps the distribution µ on R to
the distribution of

Φ (Q,N, {Ci}, {Xi}) ,

where the {Xi} are i.i.d. random variables distributed according to µ, independent of the
vector (Q,N, {Ci}), is strictly contracting under some suitable complete metric. Note
that in this case, we have that the sequence of probability measures µn+1 = T (µn)

converges as n→∞ to a fixed point of (1.1). Moreover, as long as the initial distribution
µ0 has sufficiently light tails, one can show that {µn} converges to the special endogenous
solution to (1.1), and the contracting nature of T provides an upper bound of the form

d(µn, µ) ≤ d(T (µn−1), T (µ)) ≤ cd(µn−1, µ) ≤ cnd(µ0, µ), n = 1, 2, . . . ,

for some constant 0 < c < 1, where d is the distance under which T is a contraction.
As will be discussed in more detail later (see Example 2.7), all the examples provided

earlier define contractions under dp, the Wasserstein metric of order p, for some p ≥ 1.
For completeness, we also include a result (Theorem 2.5) that gives easy to verify
conditions guaranteeing that

E

[∣∣∣R(k) −R
∣∣∣β] ≤ ck

for some 0 < c < 1, where R(k) and R have distributions µk and µ, respectively.
It follows that from a computational point of view, it suffices to have an algorithm for

computing µk for a fixed number of iterations k ∈ N. The population dynamics algorithm
produces a sample of observations approximately distributed according to µk, which can
also be helpful in searching for the existence of endogenous solutions, as stated in [2].
We now describe how to obtain an exact sample of µk, which will also make clear the
need for a computationally efficient method. It is worth mentioning that there exist a
few perfect simulation algorithms for generating observations from µ directly, although
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Convergence of the population dynamics algorithm

Π∅ = 1

Π1 = C1 Π2 = C2 Π3 = C3

Π(1,1) = C(1,1)C1

Π(1,2) = C(1,2)C1

Π(2,1) = C(2,1)C2

Π(3,1) = C(3,1)C3

Π(3,2) = C(3,2)C3

Π(3,3) = C(3,3)C3

Figure 1: Weighted branching process

they are restricted to special cases of the linear SFPE (1.2), see for e.g., [15, 16]. The
population dynamics algorithm, although only approximate, is more general in terms of
the types of SFPE it covers and the requirements on the vector (Q,N, {Ci}).

1.1 Constructing endogenous solutions

As mentioned earlier, the attracting endogenous solution to (1.1), provided it exists,
can be constructed on a structure known as a weighted branching process [31]. We now
elaborate on this point.

Let N+ = {1, 2, 3, . . . } be the set of positive integers and let U =
⋃∞
k=0(N+)k be the

set of all finite sequences i = (i1, i2, . . . , in), n ≥ 0, where by convention N0
+ = {∅}

contains the null sequence ∅. To ease the exposition, we will use (i, j) = (i1, . . . , in, j)

to denote the index concatenation operation. Next, let (Q,N, {Ci}i≥1) be a vector of
real-valued elements with N ∈ N. We will refer to this vector as the generic branching
vector. Now let {(Qi, Ni, {C(i,j)}j≥1)}i∈U be a sequence of i.i.d. copies of the generic
branching vector. To construct a weighted branching process we start by defining a
tree as follows: let A0 = {∅} denote the root of the tree, and define the nth generation
according to the recursion

An = {(i, in) ∈ U : i ∈ An−1, 1 ≤ in ≤ Ni}, n ≥ 1.

Now, assign to each node i in the tree a mark (Qi, Ni, {C(i,j)}j≥1) and a weight Πi

according to the recursion

Π∅ ≡ 1, Π(i,in) = C(i,in)Πi, n ≥ 1,

see Figure 1. If P (N <∞) = 1 and Ci ≡ 1 for all i ≥ 1, the weighted branching process
reduces to a Galton-Watson process.

To generate a sample from µk we first need to fix the initial distribution µ0, e.g.,
by letting µ0 be the degenerate at zero or one probability measure. Now construct
a weighted branching process with k generations, and let {R(0)

i }i∈Ak be i.i.d. random
variables having distribution µ0. Next, define recursively for each i ∈ Ak−r, 1 ≤ r ≤ k,

R
(r)
i = Φ

(
Qi, Ni, {C(i,j)}j≥1, {R

(r−1)
(i,j) }j≥1

)
.

The random variable R(k)
∅ is distributed according to µk, and its generation requires on

average (E[N ])k i.i.d. copies of the generic branching vector (Q,N, {Ci}i≥1). It follows
that if the goal was to obtain an i.i.d. sample of size m from distribution µk, one would
need to generate on average m(E[N ])k copies of the generic branching vector.2 However,

2Note that provided R(k) has finite variance, the Central Limit Theorem gives that a sample of size m would
provide estimates that are accurate up to an error of order m−1/2.
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in applications one typically has E[N ] > 1, e.g., N ≡ 2 for Quicksort, E[N ] ≈ 30 in the
analysis of PageRank on the WWW graph, and E[N ] can be even larger in queues
related to the maximum SFPE. This makes the exact simulation of R(k) using a weighted
branching process impractical.

The population dynamics algorithm, described below, uses a bootstrap approach
to produce a sample of size m of random variables that are approximately distributed
according to µk, and that although not independent, can be used to obtain consistent
estimators for moments, quantiles and other functions of µk.

1.2 The population dynamics algorithm

The population dynamics algorithm is based on the bootstrap, i.e., on the idea of
sampling with replacement random variables from a common pool. As described above,
the algorithm starts by generating a sample of i.i.d. random variables having distribution
µ0, just as in a naive Monte Carlo approach, with the difference that when computing
the next level of the recursion, it samples with replacement from this pool as needed by
the map Φ. In other words, to obtain a pool of approximate copies of R(j) we bootstrap
from the pool previously obtained of approximate copies of R(j−1). The approximation
lies in the fact that we are not sampling from R(j−1) itself, but from a finite sample of
conditionally independent observations that are only approximately distributed as R(j−1).
The algorithm is described below.

Let (Q,N, {Cr}) denote the generic branching vector defining the weighted branching
process. Let k be the depth of the recursion that we want to simulate, i.e., the algorithm
will produce a sample of random variables approximately distributed according to µk.
Choose m ∈ N+ to be the bootstrap sample size. For each 0 ≤ j ≤ k, the algorithm

outputs P(j,m) ,
(
R̂

(j,m)
1 , R̂

(j,m)
2 , . . . , R̂

(j,m)
m

)
, which we refer to as the sample pool at

level j.

1. Initialize: Set j = 0. Simulate a sequence {R(0)
i }mi=1 of i.i.d. random variables

distributed according to some initial distribution µ0. Let R̂(0,m)
i = R

(0)
i for i =

1, . . . ,m. Output P(0,m) =
(
R̂

(0,m)
1 , R̂

(0,m)
2 , . . . , R̂

(0,m)
m

)
and update j = 1.

2. While j ≤ k:

(a) Simulate a sequence {(Q(j)
i , N

(j)
i , {C(j)

(i,r)}r≥1)}mi=1 of i.i.d. copies of the generic
branching vector, independent of everything else.

(b) Let

R̂
(j,m)
i = Φ

(
Q

(j)
i , N

(j)
i , {C(j)

(i,r)}, {R̂
(j−1,m)
(i,r) }

)
, i = 1, . . . ,m, (1.6)

where the R̂
(j−1,m)
(i,r) are sampled uniformly with replacement from the pool

P(j−1,m).
(c) Output P(j,m) =

(
R̂

(j,m)
1 , R̂

(j,m)
2 , . . . , R̂

(j,m)
m

)
and update j = j + 1.

We conclude this section by pointing out that the complexity of the algorithm de-
scribed above is of order km, while the naive Monte Carlo approach described earlier,
which consists on sampling m i.i.d. copies of a weighted branching process up to the kth
generation, has order (E[N ])km (note that any comparison between the naive approach
and the proposed algorithm needs to be made between samples of the same size). Our
main results establish the convergence of the algorithm in the Wasserstein metric of
order p (p ≥ 1), as well as the consistency of estimators constructed using the pool
P(k,m). The following section contains all the statements, and the proofs are given in
Section 3.
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2 Main results

We start by defining the Wasserstein metric of order p.

Definition 2.1. Let M(µ, ν) denote the set of probability measures on R × R with
marginals µ and ν. Then, the Wasserstein metric of order p (1 ≤ p <∞) between µ and ν
is given by

dp(µ, ν) = inf
π∈M(µ,ν)

(∫
R×R

|x− y|p dπ(x, y)

)1/p

.

An important advantage of working with the Wasserstein metrics is that on the real
line they admit the explicit representation

dp(µ, ν) =

(∫ 1

0

|F−1(u)−G−1(u)|pdu
)1/p

, (2.1)

where F and G are the cumulative distribution functions of µ and ν, respectively,
and f−1(t) = inf{x ∈ R : f(x) ≥ t} denotes the generalized inverse of f . It fol-
lows that an optimal coupling of two real random variables X and Y is given by
(X,Y ) = (F−1(U), G−1(U)), where U is uniformly distributed in [0, 1]. We refer the
reader to [33] for a comprehensive study of the Wasserstein metric and its properties.

With some abuse of notation, we use dp(F,G) to denote the Wasserstein distance
of order p between the probability measures µ and ν, where F (x) = µ((−∞, x]) and
G(x) = ν((−∞, x]) are their corresponding cumulative distribution functions.

Our main results establish the convergence of dp(F̂k,m, Fk) as m→∞, both in mean
and almost surely, where

F̂k,m(x) =
1

m

m∑
i=1

1(R̂
(k,m)
i ≤ x) and Fk(x) = µk((−∞, x]), k ∈ N,

and P(k,m) =
(
R̂

(k,m)
1 , . . . , R̂

(k,m)
m

)
is the pool generated by the population dynamics

algorithm. The theorems are proven under two different assumptions, the first one
imposing a Lipschitz condition on the mean of Φ, and the second one requiring Φ to be
Lipschitz continuous almost surely.

Assumption 2.2. A. For some p ≥ 1 there exists a constant 0 < Hp <∞ such that if
{(Xi, Yi) : i ≥ 1} is a sequence of i.i.d. random vectors, independent of (Q,N, {Cr}),
then

E [|Φ(Q,N, {Cr}, {Xr})− Φ(Q,N, {Cr}, {Yr})|p] ≤ HpE[|X1 − Y1|p]. (2.2)

B. Φ corresponds to the linear SFPE (1.2), and for some p ≥ 1 there exists a constant
0 < Hp < ∞ such that if {(Xi, Yi) : i ≥ 1} is a sequence of i.i.d. random vectors
with E[Xi] = E[Yi], independent of (Q,N, {Cr}), then (2.2) holds.

Assumption 2.3. Suppose that for any vector (q, n, {cr}), with n ∈ N ∪ {∞}, and any
sequences of numbers {xr} and {yr} for which Φ(q, n, {cr}, {xr}) and Φ(q, n, {cr}, {yr})
are well defined, there exists a function ϕ : R→ R+ such that

|Φ(q, n, {cr}, {xr})− Φ(q, n, {cr}, {yr})| ≤
n∑
r=1

ϕ(cr)|xr − yr|.

Remark 2.4. (i) To see that Assumption 2.3 implies Assumption 2.2, note that Lem-
ma 4.1 in [23] gives that

E

[(
N∑
r=1

ϕ(Cr)|Xr − Yr|

)p]
≤ E

[
N∑
r=1

ϕ(Cr)
p|Xr − Yr|p

]
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+ E

[(
N∑
r=1

ϕ(Cr)

)p](
E[|X1 − Y1|dpe−1]

)p/(dpe−1)
≤ 2E

[(
N∑
r=1

ϕ(Cr)

)p]
E [|X1 − Y1|p] ,

and therefore Assumption 2.2 holds with Hp = 2E
[(∑N

r=1 ϕ(Cr)
)p]

, provided the

expectation is finite. However, much tighter bounds can be obtained for specific
examples, and we can usually find p ≥ 1 such that Hp < 1.

(ii) The existence of a p ≥ 1 for which Hp < 1 is important for obtaining estimates
for the rate of convergence of the algorithm that are uniform in k, and has also
important implications for the convergence of R(k) → R as k → ∞, as the next
result shows.

Theorem 2.5. Suppose Assumption 2.2(A) holds for some p ≥ 1, Hp < 1, and any
i.i.d. sequence {(Xi, Yi) : i ≥ 1} independent of (Q,N, {Cr}). Then, provided E

[
|R(0)|p

+|Φ(Q,N, {Cr}, {0})|p] <∞, there exists a random variable R and constants 0 ≤ cp < 1

and Ap <∞ such that

E
[∣∣∣R(k) −R

∣∣∣p] ≤ Apckp → 0, k →∞, (2.3)

where R(k) and R are distributed according to µk and µ, respectively. For the linear
SFPE (1.2), we have that (2.3) also holds under either of the following conditions:

i) If Assumption 2.2(B) holds and E[Q] = E[R(0)] = 0.

ii) If E
[(∑N

i=1 |Ci|
)p

+ |R(0)|p + |Q|p
]
<∞ and ρ1∨ρp < 1, where ρβ , E

[∑N
i=1 |Ci|β

]
.

As the proof of Theorem 2.5 shows, one can take cp = Hp under the main set of
conditions as well as under conditions (i), whereas for (ii) we have cp = ρ1 ∨ ρp. As a
consequence of the proof of Theorem 2.5 we also obtain the following explicit bound for
the moments of R(k).

Lemma 2.6. Suppose Assumption 2.2(A) holds for some p ≥ 1. In the linear case, if only
Assumption 2.2(B) holds, suppose further that E[R(0)] = E[Q] = 0. Then, for any k ≥ 0,(

E[|R(k)|p]
)1/p

≤ Ap
k−1∑
i=0

(H1/p
p )i,

where Ap = (H
1/p
p + 1)

(
E[|R(0)|p]

)1/p
+ (E [|Φ(Q,N, {Cr}, {0})|p])

1/p
.

Before stating the main theorems establishing the convergence of the algorithm in
the Wasserstein metric, we point out how Assumptions 2.2 and 2.3 are satisfied by all
the examples mentioned in the introduction.

Example 2.7. • The linear SFPE (1.2) clearly satisfies Assumption 2.3 with ϕ(t) = |t|.
Moreover, for the Quicksort algorithm studied in [31, 17, 32] we have N ≡ 2,
C1 = U = 1 − C2 and Q = 2U lnU + 2(1 − U) ln(1 − U) + 1, with U uniformly
distributed on [0, 1] and E[Q] = 0, in which case we can take any p ∈ N+ and
Hp = 1− 2pE[Up−1(1− U)] = (p− 1)/(p+ 1) < 1 in Assumption 2.2(B). Lemma 2.6
also gives that E[|R(k)|p] is uniformly bounded in k for all p ≥ 1.

For the PageRank algorithm studied in [34, 21, 10] we have {Ci}1≤i≤N i.i.d. and
independent of N , |Ci| ≤ c < 1 a.s., and E[|C1|p] ≤ cp/E[N ] for any p ≥ 1. Hence,
we can take p = 1 and H1 = E[N ]E[|C1|] ≤ c < 1 in Assumption 2.2. Furthermore,
Theorem 2.5(ii) gives that E[|R(k) − R|q] = O(γk) for some 0 < γ < 1 provided
E[|Q|q +Nq] <∞, which in turn gives the uniform boundedness of E[|R(k)|q].
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• Using the inequality∣∣∣∣ max
1≤i≤n

{xi} − max
1≤i≤n

{yi}
∣∣∣∣ ≤ max

1≤i≤n
|xi − yi| ≤

n∑
i=1

|xi − yi| (2.4)

for any real numbers {xi, yi} and any n ≥ 1, we obtain that the maximum SFPE
(1.3) satisfies Assumption 2.3 with ϕ(t) = |t| as well. Furthermore, in the analysis
of queueing networks with parallel servers and synchronization requirements from
[25, 30], where T ≡ 0 (equivalently, Q ≡ 1), the stability condition of the system
implies that Hp < 1 for any p ≥ 1 whenever the system is stable. Lemma 2.6 then
implies that E[|R(k)|p] is uniformly bounded in k for all p ≥ 1.

• In the case of the discounted tree sum SFPE (1.4), inequality (2.4) implies that
we can also take ϕ(t) = |t| in Assumption 2.3. For the analysis of the FIND al-
gorithm in [14] in particular, we have N ≡ 2, C1 = U = 1 − C2 and Q ≡ 1,
with U uniformly distributed on [0, 1], and we obtain E[|max{UX1, (1 − U)X2} −
max{UY1, (1−U)Y2}|p] ≤ E [max{U |X1 − Y1|, (1− U)|X2 − Y2|}p] ≤ 2E[Up]E[|X1 −
Y1|p]. Hence, we can take Hp = 2E[Up] = 2/(p + 1) < 1 for any p > 1 in Assump-
tion 2.2(A). Lemma 2.6 then gives that E[|R(k)|p] is uniformly bounded in k for all
p > 1

• To see that (1.5) also satisfies Assumption 2.3 with ϕ(t) = |t| (in this case Ci ≡
tanh(β) for all i ≥ 1), let c = tanh(β) ∈ [0, 1) (since β ≥ 0) and note that the function

f(x) = arctanh(c tanh(x)) =
1

2
ln

(
1 + c(e2x − 1)/(e2x + 1)

1− c(e2x − 1)/(e2x + 1)

)
=

1

2
ln

(
e2x(1 + c) + 1− c
e2x(1− c) + 1 + c

)
has derivative

f ′(x) =
4c

2(1 + c2) + (e2x + e−2x)(1− c2)
=

2c

1 + c2 + cosh(2x)(1− c2)
,

and therefore satisfies

|f(x)− f(y)| = |f ′(ξ)||x− y| ≤ c|x− y|, for some ξ between x and y.

Assumption 2.2 is then satisfied for p = 1 and H1 ≤ E[N ] tanh(β), with Hp < 1 at
high temperatures (β < 1/E[N ]). Moreover, since |f(x)| ≤ c|x|, R(k) in the “free
entropy” SFPE (1.5) is smaller or equal than R̃(k), where

R̃(k) = |Q|+
N∑
i=1

tanh(β)R̃
(k−1)
i .

Hence, provided β < 1/E[N ], Theorem 2.5(ii) gives that for any p ≥ 1 for which
E[|Q|p +Np] <∞, E[|R(k)|p] is uniformly bounded in k.

Our first result for the population dynamics algorithm establishes the convergence in
mean of dp(F̂k,m, Fk) under the “optimal” moment conditions, that is, assuming only that
max0≤j≤k E[|R(j)|p] <∞. This result was previously proven in [11] for the linear SFPE
(1.2) for p = 1.

Theorem 2.8. Fix 1 ≤ p <∞ and suppose that Φ satisfies either Assumption 2.2(A) or
Assumption 2.2(B), for p. Assume further that for any fixed k ∈ N, max0≤j≤k E[|R(j)|p] <
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∞. Let {R(j)
1 , . . . , R

(j)
m } be an i.i.d. sample from distribution Fj , and let Fj,m denote their

corresponding empirical distribution function. Then,

E
[
dp(F̂k,m, Fk)p

]
≤

(
k∑
r=0

(H1/p
p )r

)p−1 k∑
j=0

(H1/p
p )k−jE [dp(Fj,m, Fj)

p] ,

where 0 < Hp <∞ is the same as in Assumption 2.2. Moreover, if max0≤j≤k E[|R(j)|q] <
∞ for q > p ≥ 1, q 6= 2p, then

E
[
dp(F̂k,m, Fk)p

]
≤ K

(
k∑
r=0

(H1/p
p )r

)p−1 k∑
j=0

(H1/p
p )k−j(E[|R(j)|q])p/q ·m−min{(q−p)/q, 1/2},

where K = K(p, q) is a constant that only depends on p and q.

Remark 2.9. (i) Note that Assumption 2.2 does not require that Hp < 1, i.e., it is not
necessary for Φ to define a contraction for the algorithm to work. However, when
Hp < 1 the bound provided by Theorem 2.8 becomes independent of k, ensuring
that the complexity of the population dynamics algorithm remains linear in k, rather
than exponential, i.e., (E[N ])k, as for the naive algorithm.

(ii) Even in the case when Hp ≥ 1 for all p ≥ 1, the explicit bounds provided by
Theorem 2.8 may be useful for determining whether endogenous solutions exist,
since they guarantee that we can accurately approximate R(k).

(iii) We also point out that the first inequality in Theorem 2.8 implies that the rate at

whichE
[
dp(F̂k,m, Fk)p

]
converges to zero is determined by max0≤j≤k E[dp(Fj,m, Fj)].

Since dp(Fj,m, Fj) corresponds to implementing the population dynamics algorithm
by sampling without replacement from a “perfect” i.i.d. pool of observations from
µj−1, this convergence rate is in some sense optimal.

(iv) For all the examples given in Examples 2.7, we have Hp < 1 and supk≥0E[|R(k)|q] <
∞ for some q > p, making the bound provided by Theorem 2.8 independent of
k. Moreover, for the Quicksort and FIND algorithms, as well as for the queuing
networks with parallel servers and synchronization requirements, the best possible
rate of convergence is achieved, i.e., E[dp(F̂k,m, Fk)p] = O(m−1/2) uniformly in k.

We now turn our attention to the almost sure convergence of dp(F̂k,m, Fk), for which
we provide two different results. The first one holds under Assumption 2.2(A) as
above, but under rather strong moment conditions. Note that for the linear case

Assumption 2.2(A) holds for any p ≥ 1 for which E
[(∑N

i=1 |Ci|
)p]

<∞, by Remark 2.4(i),

and since the almost sure convergence does not require that we find Hp < 1, we do not
need to consider the weaker Assumption 2.2(B) (which only requires that (2.2) holds for
E[Xi − Yi] = 0) in the statement of our theorem.

Theorem 2.10. Fix 1 ≤ p <∞ and suppose that Φ satisfies Assumption 2.2(A) for both
p and 2p. Assume further that for any fixed k ∈ N, max0≤j≤k E[(R(j))2p(log |R(j)|)+] <∞.
Then,

lim
m→∞

dp(F̂k,m, Fk) = 0 a.s.

The moment condition requiring the finiteness of the 2p absolute moment also appears
in some related results for the convergence of the Wasserstein distance between a
distribution function and its empirical distribution function, specifically, concentration
inequalities [18] and a central limit theorem [12]. In our case, where we seek only to
establish the almost sure convergence of the algorithm, this condition is too strong,
so we provide below an improved result under the finer Assumption 2.3. A version of
Theorem 2.11 below for the special case of the non-branching (N ≡ 1) linear recursion
(1.2) was given in [1] (Theorem 4.1).
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Theorem 2.11. Fix 1 ≤ p < ∞ and suppose that Φ satisfies Assumption 2.3. Assume
further that E[|R(0)|p+δ + Zp+δ] < ∞ for some δ > 0, where Z =

∑N
i=1 ϕ(Ci). Then, for

any fixed k ∈ N,
lim
m→∞

dp(F̂k,m, Fk) = 0 a.s.

Our last result relates the convergence of dp(F̂k,m, Fk) to the consistency of estimators
based on the pool P(k,m). More precisely, the value of the algorithm lies in the fact
that it efficiently produces a sample of identically distributed random variables whose
distribution is approximately Fk. A natural estimator for quantities of the form E[h(R(k))]

is then given by

1

m

m∑
i=1

h(R̂
(k,m)
i ) =

∫
R

h(x)dF̂k,m(x). (2.5)

However, the random variables in P(k,m) are not independent of each other, and the

consistency of such estimators requires proof. In the sequel, the symbol
P→ denotes

convergence in probability.

Definition 2.12. We say that Θn is a weakly consistent estimator for θ if Θn
P→ θ as

n→∞. We say that it is a strongly consistent estimator for θ if Θn → θ a.s.

Our last result shows the consistency of estimators of the form in (2.5) for a broad
class of functions.

Proposition 2.13. Fix 1 ≤ p < ∞ and suppose that h : R → R satisfies |h(x)| ≤
C(1 + |x|p) for all x ∈ R and some constant C > 0. Then, the following hold:

1. If E[dp(F̂k,m, Fk)p]→ 0 as m→∞, then (2.5) is a weakly consistent estimator for
E[h(R(k))] for each fixed k ∈ N.

2. If dp(F̂k,m, Fk)→ 0 a.s., as m→∞, then (2.5) is a strongly consistent estimator for
E[h(R(k))] for each fixed k ∈ N.

We conclude that the population dynamics algorithm can be used to efficiently gener-
ate sample pools of random variables having a distribution that closely approximates
that of the special endogenous solution to SFPEs of the form in (1.1). Furthermore, these
sample pools can be used to produce consistent estimators for a broad class of functions.
The gain in efficiency of the algorithm compared to a naive Monte Carlo approach,
combined with the consistency guarantees proved in this paper, make it extremely useful
for the numerical analysis of many problems where SFPEs appear.

3 Proofs

This section includes the proofs of Theorems 2.8, 2.10, 2.11, Proposition 2.13, The-
orem 2.5, and of Lemma 2.6, in that order. The last two appear at the end since they
are not directly related to the population dynamics algorithm. The first four proofs are
based on a construction of the pools {P(j,m) : 0 ≤ j ≤ k} where we carefully couple the

random variables {R̂(j,m)
i } with i.i.d. observations from their limiting distribution Fj .

To start, for any k ∈ N let

Ek =
{(
Q

(j)
i , N

(j)
i , {C(j)

(i,r)}r≥1, {U
(j)
(i,r)}r≥1

)
: i ≥ 1, 0 ≤ j ≤ k

}
(3.1)

be a collection of i.i.d. random vectors where
(
Q

(j)
i , N

(j)
i , {C(j)

(i,r)}r≥1
)

has the same distri-

bution as the generic branching vector (Q,N, {Cr}i≥1) and the {U (j)
(i,r)}r≥1 are i.i.d. ran-

dom variables uniformly distributed in [0, 1], independent of
(
Q

(j)
i , N

(j)
i , {C(j)

(i,r)}r≥1
)

.
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Next, we recursively construct a sequence of random variables {(R̂(j,m)
i , R

(j)
i ) : 1 ≤ i ≤

m, 0 ≤ j ≤ k} as follows:

i. Set R̂(0,m)
i = F−10 (U

(0)
(i,1)) = R

(0)
i , for 1 ≤ i ≤ m; define

F̂0,m(x) =
1

m

m∑
i=1

1(R̂
(0,m)
i ≤ x) = F0,m(x).

ii. For 1 ≤ j ≤ k and each 1 ≤ i ≤ m,

R̂
(j,m)
i = Φ

(
Q

(j)
i , N

(j)
i , {C(j)

(i,r)}r≥1, {F̂
−1
j−1,m(U

(j)
(i,r))}r≥1

)
and

R
(j)
i = Φ

(
Q

(j)
i , N

(j)
i , {C(j)

(i,r)}r≥1, {F
−1
j−1(U

(j)
(i,r))}r≥1

)
;

define

F̂j,m(x) =
1

m

m∑
i=1

1(R̂
(j,m)
i ≤ x) and Fj,m(x) =

1

m

m∑
i=1

1(R
(j)
i ≤ x).

Note that the random variables {R(j)
i }mi=1 are i.i.d. and have distribution Fj , and therefore,

Fj,m is an empirical distribution function for Fj . The distribution functions F̂j,m are
those obtained through the population dynamics algorithm.

Throughout the proofs we will also use repeatedly the sigma-algebra Fk = σ(Ek) for

k ∈ N. We point out that all the random variables {(R̂(k,m)
i , R

(k)
i ) : i ≥ 1} are measurable

with respect to Fk for all m ≥ 1.
We are now ready to prove Theorem 2.8.

Proof of Theorem 2.8. Let {(R̂(j,m)
i , R

(j)
i ) : 1 ≤ i ≤ m, 0 ≤ j ≤ k} be a sequence of

random vectors constructed as explained above.
Next, note that from the triangle inequality we obtain

dp(F̂j,m, Fj) ≤ dp(F̂j,m, Fj,m) + dp(Fj,m, Fj). (3.2)

Now let χ be a Uniform(0,1) random variable independent of everything else, and
define the random variables

R̂(j,m) =

m∑
i=1

R̂
(j,m)
i 1((i− 1)/m < χ ≤ i/m) and

R(j) =

m∑
i=1

R
(j)
i 1((i− 1)/m < χ ≤ i/m),

which conditionally on Fj are distributed according to F̂j,m and Fj,m, respectively. Then,
from the definition of dp we have

dp(F̂j,m, Fj,m)p = inf
X∼F̂j,m,Y∼Fj,m

E [ |X − Y |p| Fj ] ≤ E
[∣∣∣R̂(j,m) −R(j)

∣∣∣p∣∣∣Fj]
=

1

m

m∑
i=1

∣∣∣R̂(j,m)
i −R(j)

i

∣∣∣p . (3.3)

It follows from the observation that the random variables X
(j)
i = R̂

(j,m)
i − R

(j)
i are

identically distributed, that

E
[
dp(F̂j,m, Fj,m)p

]
≤ E

[∣∣∣R̂(j,m)
1 −R(j)

1

∣∣∣p] .
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Next, suppose first that Assumption 2.2(A) holds, and note that

E
[∣∣∣R̂(j,m)

1 −R(j)
1

∣∣∣p] = E
[∣∣∣Φ(Q(j)

1 , N
(j)
1 , {C(j)

(1,r)}r≥1, {F̂
−1
j−1,m(U

(j)
(1,r))}r≥1

)
−Φ

(
Q

(j)
1 , N

(j)
1 , {C(j)

(1,r)}r≥1, {F
−1
j−1(U

(j)
(1,r))}r≥1

)∣∣∣p]
≤ HpE

[∣∣∣F̂−1j−1,m(U
(j)
(1,1))− F

−1
j−1(U

(j)
(1,1))

∣∣∣p]
= HpE

[
dp(F̂j−1,m, Fj−1)p

]
.

For the linear case when only Assumption 2.2(B) holds, note that

E[F̂−1j−1,m(U)− F−1j−1(U)] = E

[
N∑
i=1

Ci

]
E[R̂

(j−2,m)
1 −R(j−2)]

=

(
E

[
N∑
i=1

Ci

])j−1
E[R̂

(0,m)
1 −R(0)] = 0,

and therefore,

E
[∣∣∣R̂(j,m)

1 −R(j)
1

∣∣∣p] = E


∣∣∣∣∣∣
N

(j)
1∑
r=1

C
(j)
(1,r)

(
F̂−1j−1,m(U

(j)
(1,r))− F

−1
j−1(U

(j)
(1,r))

)∣∣∣∣∣∣
p

≤ HpE
[∣∣∣F̂−1j−1,m(U

(j)
(1,1))− F

−1
j−1(U

(j)
(1,1))

∣∣∣p]
= HpE

[
dp(F̂j−1,m, Fj−1)p

]
.

It now follows from (3.2) and Minkowski’s inequality, that(
E
[
dp(F̂j,m, Fj)

p
])1/p

≤
(
E
[(
dp(F̂j,m, Fj,m) + dp(Fj,m, Fj)

)p])1/p
≤
(
E
[
dp(F̂j,m, Fj,m)p

])1/p
+ (E [dp(Fj,m, Fj)

p])
1/p

≤
(
HpE

[
dp(F̂j−1,m, Fj−1)p

])1/p
+ (E [dp(Fj,m, Fj)

p])
1/p

.

Iterating the recursion above we obtain

(
E
[
dp(F̂j,m, Fj)

p
])1/p

≤
j∑
r=1

(H1/p
p )j−r (E [dp(Fr,m, Fr)

p])
1/p

+ (H1/p
p )j

(
E
[
dp(F̂0,m, F0)p

])1/p
=

j∑
r=0

(H1/p
p )j−r (E [dp(Fr,m, Fr)

p])
1/p

.

Now let λj,r = (H
1/p
p )j−r

(∑j
r=0(H

1/p
p )j−r

)−1
and use the concavity of g(x) = x1/p to

obtain(
j∑
r=0

(H1/p
p )j−r

)−1 (
E
[
dp(F̂j,m, Fj)

p
])1/p

≤
j∑
r=0

λj,r (E [dp(Fr,m, Fr)
p])

1/p

≤

(
j∑
r=0

λj,rE [dp(Fr,m, Fr)
p]

)1/p

,
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or equivalently,

E
[
dp(F̂j,m, Fj)

p
]
≤

(
j∑
s=0

(H1/p
p )s

)p−1 j∑
r=0

(H1/p
p )j−rE [dp(Fr,m, Fr)

p] .

This completes the first part of the proof.
Next, assume that max0≤r≤k E[|R(r)|q] <∞ for q > p ≥ 1, q 6= 2p, and use Theorem 1

in [18] to obtain that

E [dp(Fr,m, Fr)
p] ≤ C(E[|R(r)|q])p/q

(
m−1/2 +m−(q−p)/q

)
,

where C = C(p, q) is a constant that does not depend on Fr. The second statement of
the theorem now follows.

We now turn to the proof of Theorem 2.10. To simplify its exposition we first provide
a preliminary result for the mean Wasserstein distance between a distribution and its
empirical distribution function.

Lemma 3.1. Let G be a distribution on R and let {Xi}i≥1 be i.i.d. random variables
distributed according to G. Suppose E[|X1|q(log |X1|)+] < ∞ for some q ≥ 2, and let
Gm(x) = m−1

∑m
i=1 1(Xi ≤ x) denote the empirical distribution function of the {Xi}.

Then,
∞∑
m=1

1

m
E[dq(Gm, G)q] <∞.

Proof. Fix ε > 0 and define for x ≥ 0 the functions

a(x) = min{1/G(x), xq+ε} and b(x) = min{1/G(−x), xq+ε}.

Next, use Proposition 7.14 in [9] followed by the monotonicity of the Lp norm, to see that

∞∑
m=1

1

m
E [dq(Gm, G)q] ≤ q2q−1

∞∑
m=1

1

m

∫ ∞
−∞
|x|q−1E [|Gm(x)−G(x)|] dx

≤ q2q−1
∞∑
m=1

1

m

∫ a−1(m)

−b−1(m)

|x|q−1
(
E
[
(Gm(x)−G(x))

2
])1/2

dx

+ q2q−1
∞∑
m=1

1

m

∫ ∞
a−1(m)

xq−1E
[
Gm(x) +G(x)

]
dx

+ q2q−1
∞∑
m=1

1

m

∫ −b−1(m)

−∞
|x|q−1E [Gm(x) +G(x)] dx

= q2q−1
∞∑
m=1

1

m

∫ a−1(m)

−b−1(m)

|x|q−1
√
G(x)G(x)

m
dx (3.4)

+ q2q
∞∑
m=1

1

m

∫ ∞
a−1(m)

xq−1G(x) dx (3.5)

+ q2q
∞∑
m=1

1

m

∫ −b−1(m)

−∞
|x|q−1G(x) dx, (3.6)

where g−1(t) = inf{x ∈ R : g(x) ≥ t} is the generalized inverse of function g.
Next, to bound (3.4) note that

∞∑
m=1

1

m3/2

∫ a−1(m)

−b−1(m)

|x|q−1
√
G(x)G(x) dx
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≤
∞∑
m=1

1

m3/2

∫ a−1(m)

0

xq−1
√
G(x) dx+

∞∑
m=1

1

m3/2

∫ 0

−b−1(m)

(−x)2p−1
√
G(x) dx

=

∫ ∞
0

∞∑
m=ba(x)c+1

xq−1

m3/2

√
G(x) dx+

∫ ∞
0

∞∑
m=bb(x)c+1

xq−1

m3/2

√
G(−x) dx,

where in the last equality we used the observation that {x < a−1(m)} = {a(x) < m},
respectively, {x < b−1(m)} = {b(x) < m}. Now note that for any n ≥ 0 we have

∞∑
m=n+1

1

m3/2
≤

∞∑
m=n+1

(
m+ 1

m

)3/2 ∫ m+1

m

1

t3/2
dt

≤
(

1 +
1

n+ 1

)3/2 ∫ ∞
n+1

t−3/2 dt ≤ 25/2(n+ 1)−1/2.

Hence, (3.4) is bounded from above by a constant times∫ ∞
0

xq−1
√
G(x)(ba(x)c+ 1)−1/2 dx+

∫ ∞
0

xq−1
√
G(−x)(bb(x)c+ 1)−1/2 dx

≤ 2 +

∫ ∞
1

xq−1

√
G(x)

a(x)
dx+

∫ ∞
1

xq−1

√
G(−x)

b(x)
dx

= 2 +

∫
{x≥1:1/G(x)≤xq+ε}

xq−1G(x) dx+

∫
{x≥1:1/G(x)>xq+ε}

xq/2−1−ε/2
√
G(x) dx

+

∫
{x≥1:1/G(−x)≤xq+ε}

xq−1G(−x) dx+

∫
{x≥1:1/G(−x)>xq+ε}

xq/2−1−ε/2
√
G(−x) dx

≤ 2 +

∫ ∞
1

xq−1G(x) dx+

∫ ∞
1

xq−1G(−x) dx+ 2

∫ ∞
1

x−1−ε dx

≤ 2 +
1

q

∫ ∞
1

xqG(dx) +
1

q

∫ −1
−∞

(−x)qG(dx) +
2

ε

≤ 2 +
1

q
E[|X1|q] +

2

ε
<∞.

To analyze (3.5) use the observation that {x ≥ a−1(m)} = {a(x) ≥ m} to obtain that

∞∑
m=1

1

m

∫ ∞
a−1(m)

xq−1G(x) dx =

∫ ∞
a−1(1)

ba(x)c∑
m=1

1

m
xq−1G(x) dx

≤
∫ ∞
a−1(1)

xq−1G(x)

ba(x)c∑
m=1

m+ 1

m

∫ m+1

m

1

t
dt dx

≤ 2

∫ ∞
a−1(1)

xq−1G(x)

∫ ba(x)c+1

1

t−1 dt dx

≤ 2

∫ ∞
a−1(1)

xq−1G(x) log(xq+ε + 1) dx

≤ 2 log 2 + 2(q + ε) sup
t≥1

log(t+ 1)

log t

∫ ∞
1

xq−1(log x)G(x) dx.

Since supt≥1 log(t+ 1)/ log t <∞ and∫ ∞
1

xq−1(log x)G(x) dx =
xq(log x− 1)

q
G(x)

∣∣∣∣∞
1

+

∫ ∞
1

xq(log x− 1)

q
G(dx)
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=
G(1)

q
+
E[|X1|q(logX1 − 1)1(X1 ≥ 1)]

q

≤ E[|X1|q logX11(X1 ≥ 1)]

q
<∞,

we obtain that (3.5) is finite. Finally, the same steps used to bound (3.5) give that (3.6)
is bounded by

q2q
(

2 log 2 + 2(q + ε)
E[|X1|q log |X1|1(X1 ≤ −1)]

q
sup
t≥1

log(t+ 1)

log t

)
<∞.

We now prove the first almost sure convergence result for the algorithm. The idea of
the proof is to first identify a recursive formula for the Wasserstein distance dp(F̂k,m, Fk)

as it was done for the convergence in mean theorem. Once we do this, the main difficulty
lies in ensuring that the errors in the bound converge sufficiently fast to satisfy the
criterion for almost sure convergence in the Borel-Cantelli lemma. In the case when we
have a bit more than 2p finite moments this can be done using Chebyshev’s inequality,
similarly to the proof of the strong law of large numbers under finite fourth moment
conditions. We start with this case below.

Proof of Theorem 2.10. We will start the proof by deriving an upper bound for dp(F̂k,m, Fk).

To this end, we construct the random variables {(R̂(j,m)
i , R

(j)
i ) : 1 ≤ i ≤ m, 0 ≤ j ≤ k} ac-

cording to the construction given at the beginning of the section. Recall that Fj = σ(Ej),
where Ej is given by (3.1), and that Assumption 2.2(A) holds for both p and 2p.

Next, note that the triangle inequality followed by (3.3) gives

dp(F̂k,m, Fk) ≤ dp(F̂k,m, Fk,m) + dp(Fk,m, Fk)

≤

(
1

m

m∑
i=1

∣∣∣R̂(k,m)
i −R(k)

i

∣∣∣p)1/p

+ dp(Fk,m, Fk).

Now define for j ≥ 1, X(j,m)
i =

∣∣∣R̂(j,m)
i −R(j)

i

∣∣∣p, and note that by construction, the

random variables {X(j,m)
i }i≥1 are identically distributed and conditionally independent

given Fj−1. Set Z(j,m)
i = X

(j,m)
i − E[X

(j,m)
1 |Fj−1] and note that

E[X
(j,m)
1 |Fj−1] = E

[∣∣∣Φ(Q(j)
1 , N

(j)
1 , {C(j)

(1,r)}r≥1, {F̂
−1
j−1,m(U

(j)
(1,r))}r≥1

)
−Φ

(
Q

(j)
1 , N

(j)
1 , {C(j)

(1,r)}r≥1, {F
−1
j−1(U

(j)
(1,r))}r≥1

)∣∣∣p∣∣∣Fj−1]
≤ HpE

[∣∣∣F̂−1j−1,m(U
(j)
(1,1))− F

−1
j−1(U

(j)
(1,1))

∣∣∣p∣∣∣Fj−1]
= Hpdp(F̂j−1,m, Fj−1)p. (3.7)

It follows that

1

m

m∑
i=1

∣∣∣R̂(k,m)
i −R(k)

i

∣∣∣p ≤ 1

m

m∑
i=1

Z
(k,m)
i +Hpdp(F̂k−1,m, Fk−1)p,

which in turn implies that

dp(F̂k,m, Fk) ≤ dp(Fk,m, Fk) +

(
1

m

m∑
i=1

Z
(k,m)
i +Hpdp(F̂k−1,m, Fk−1)p

)1/p

≤ dp(Fk,m, Fk) +

∣∣∣∣∣ 1

m

m∑
i=1

Z
(k,m)
i

∣∣∣∣∣
1/p

+H1/p
p dp(F̂k−1,m, Fk−1), (3.8)
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Convergence of the population dynamics algorithm

where in the last step we used the inequality (x+ y)
β ≤ xβ + yβ for 0 < β ≤ 1 and

x, y ≥ 0. Iterating (3.8) k − 1 more times we obtain

dp(F̂k,m, Fk) ≤
k∑
j=1

dp(Fj,m, Fj) +

∣∣∣∣∣ 1

m

m∑
i=1

Z
(j,m)
i

∣∣∣∣∣
1/p
 (H1/p

p )k−j + (H1/p
p )kdp(F̂0,m, F0)

=

k∑
j=0

(H1/p
p )k−jdp(Fj,m, Fj) +

k∑
j=1

(H1/p
p )k−j

∣∣∣∣∣ 1

m

m∑
i=1

Z
(j,m)
i

∣∣∣∣∣
1/p

.

Now note that by the Glivenko-Cantelli lemma and the strong law of large numbers,

sup
x∈R
|Fj,m(x)− Fj(x)| → 0 a.s. and

1

m

m∑
i=1

|R(j)
i |

p =

∫ ∞
−∞
|x|pdFj,m(x)→

∫ ∞
−∞
|x|pdFj(x) a.s.,

as m → ∞, and therefore, by Definition 6.8 and Theorem 6.9 in [33], dp(Fj,m, Fj) →
0 a.s. for each j ≥ 1. It suffices then to show that for each 1 ≤ j ≤ k the sums
m−1

∑m
i=1 Z

(j,m)
i → 0 a.s. as well.

To see this note that for any ε > 0,

∞∑
m=1

P

(
1

m

m∑
i=1

Z
(j,m)
i > ε

)
≤
∞∑
m=1

1

ε2m2
E

( m∑
i=1

Z
(j,m)
i

)2


=
1

ε2

∞∑
m=1

1

m

(
E

[(
Z

(j,m)
1

)2]
+ (m− 1)E

[
Z

(j,m)
1 Z

(j,m)
2

])

=
1

ε2

∞∑
m=1

1

m
E
[
Var(X

(j,m)
1 |Fj−1)

]
.

Moreover, using the same arguments as in the proof of Theorem 2.8, we obtain that

Var(X
(j,m)
1 |Fj−1) ≤ E

[
(X

(j,m)
1 )2

∣∣∣Fj−1]
= E

[(
Φ
(
Q

(j)
1 , N

(j)
1 , {C(j)

(1,r)}r≥1, {F̂
−1
j−1,m(U

(j)
(1,r))}r≥1

)
−Φ

(
Q

(j)
1 , N

(j)
1 , {C(j)

(1,r)}r≥1, {F
−1
j−1(U

(j)
(1,r))}r≥1

))2p∣∣∣∣Fj−1]
≤ H2pE

[(
F̂−1j−1,m(U

(j)
(1,1))−F

−1
j−1(U

(j)
(1,1))

)2p∣∣∣∣Fj−1] (by Assumption 2.2(A))

= H2p d2p(F̂j−1,m, Fj−1)2p.

Next, note that by Theorem 2.8 we have

E
[
d2p(F̂j−1,m, Fj−1)2p

]
≤

(
j−1∑
s=0

Hs
2p

)2p−1 j−1∑
r=0

Hj−1−r
2p E

[
d2p(Fr,m, Fr)

2p
]
.

It follows that for any 1 ≤ j ≤ k,

∞∑
m=1

P

(
1

m

m∑
i=1

Z
(j,m)
i > ε

)
≤ H2p

ε2

∞∑
m=1

1

m
E
[
d2p(F̂j−1,m, Fj−1)2p

]

≤ H2p

ε2

(
j−1∑
s=0

Hs
2p

)2p−1 j−1∑
r=0

Hj−1−r
2p

∞∑
m=1

1

m
E
[
d2p(Fr,m, Fr)

2p
]
.
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Convergence of the population dynamics algorithm

Finally, since by Lemma 3.1 we have that

∞∑
m=1

1

m
E
[
d2p(Fr,m, Fr)

2p
]
<∞

for each 0 ≤ r ≤ j − 1, the Borel-Cantelli Lemma gives that limm→∞m−1
∑m
i=1 Z

(j,m)
i = 0

a.s. This completes the proof.

We now move on to the proof of Theorem 2.11, where we only have a bit more than p
finite moments. In this case, we cannot use Chebyshev’s inequality to verify the condition
for the Borel-Cantelli lemma, and a finer analysis of the errors is required. In particular,
our proof uses the Lipschitz condition from Assumption 2.3 to derive a large-deviations
bound for the sum of independent random variables appearing in the recursive analysis
of dp(F̂k,m, Fk). Before proceeding to the main proof, we give three preliminary results.
The first one provides an upper bound for the generalized inverse of any distribution
function having finite q absolute moments.

Lemma 3.2. Let G be a distribution function on R, and let G−1 be its generalized
inverse. Suppose that G has finite absolute moments of order q > 0, and let X have
distribution G. Then, for any u ∈ (0, 1),

|G−1(u)| ≤ ||X+||q(1− u)−1/q + ||X−||qu−1/q.

Proof. Let X be a random variable having distribution G, and define G+(x) = P (X+ ≤
x) = G(x)1(x ≥ 0) and G−(x) = P (X− ≤ x) = P (X ≥ −x)1(x ≥ 0). Then,

G−1+ (u) = inf{x ∈ R : G+(x) ≥ u} = inf{x ≥ 0 : G(x) ≥ u} = G−1(u)+,

while if we define G∗− to be the right-continuous generalized inverse of G−, then

G∗−(1− u) = inf{x ∈ R : G−(x) > 1− u}
= inf{x ≥ 0 : 1−G(−x) + P (X = −x) > 1− u}
= inf{x ≥ 0 : G(−x)− P (X = −x) < u}
= − inf{x ≤ 0 : G(x) ≥ u} = G−1(u)−.

Now use Markov’s inequality to obtain that for all x > 0,

1−G+(x) ≤ min{1, E[(X+)q]}x−q , 1−H+(x)

and
1−G−(x) ≤ min{1, E[(X−)q]}x−q , 1−H−(x).

The first inequality implies that for any u ∈ (0, 1),

G−1+ (u) = inf{x ∈ R : G+(x) ≥ u}

≤ inf{x ∈ R : H+(x) ≥ u} = H−1+ (u) = ||X+||q(1− u)−1/q,

while the second one plus the continuity of H− gives

G−1(u)− = G∗−(1− u) = inf{x ∈ R : G−(x) > 1− u}
≤ inf{x ∈ R : H−(x) > 1− u}

= inf{x ∈ R : H−(x) ≥ 1− u} = H−1− (1− u) = ||X−||qu−1/q.

It follows that

|G−1(u)| = G−1(u)+ +G−1(u)− ≤ ||X+||q(1− u)−1/q + ||X−||qu−1/q.
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Convergence of the population dynamics algorithm

The next two preliminary results provide key steps for the proof of Theorem 2.11,
which essentially consist on giving a large-deviations bound (uniform in m) for the sample
mean of (conditionally) i.i.d. random variables. The random variables {Y (j,m)

i } defined
below will be used as upper bounds for dp+δj+1

(F̂j,m, Fj) in the proof of Theorem 2.11,
and the estimates we need have to be very tight considering that we no longer have
finite second moments, so the rate of convergence to their mean can be very slow. The
lemma below gives an upper bound for the truncated summands.

Lemma 3.3. Fix 1 ≤ p <∞ and ε > 0. Suppose Assumption 2.3 holds and E[|R(0)|p+δ +

Zp+δ] <∞ for some δ > 0, where Z =
∑N
i=1 ϕ(Ci). Let Fj = σ(Ej), where Ej is defined

by (3.1), set δj = δ(k − j)/k, 0 ≤ j ≤ k, η =
(
ε−14e2/ε max{1, E[Zp+δ]}

)−(p+δj)/(p+δj+1)
,

and

Y
(j,m)
i =

N
(j+1)
i∑
r=1

ϕ(C
(j+1)
(i,r) )

∣∣∣F̂−1j,m(U
(j+1)
(i,r) )− F−1j (U

(j+1)
(i,r) )

∣∣∣
p+δj+1

, (3.9)

for i = 1, . . . ,m. Then, on the event
{

supm≥n dp+δj (F̂j,m, Fj)
p+δj ≤ η

}
, we have

P

(
sup
m≥n

1

m

m∑
i=1

Y
(j,m)
i 1(Y

(j,m)
i ≤ m/ logm) > ε

∣∣∣∣∣Fj
)
≤ 2(n− 1)−1/2.

Proof. We start by noting that

P

(
sup
m≥n

1

m

m∑
i=1

Y
(j,m)
i 1(Y

(j,m)
i ≤ m/ logm) > ε

∣∣∣∣∣Fj
)

≤
∞∑
m=n

P

(
1

m

m∑
i=1

Y
(j,m)
i 1(Y

(j,m)
i ≤ m/ logm) > ε

∣∣∣∣∣Fj
)
. (3.10)

To bound each of the probabilities in (3.10) use Chernoff’s bound to obtain that

P

(
1

m

m∑
i=1

Y
(j,m)
i 1(Y

(j,m)
i ≤ m/ logm) > ε

∣∣∣∣∣Fj
)

≤ min
θ≥0

e−θεm
(
E
[
eθY

(j,m)
1 1(Y

(j,m)
1 ≤m/ logm)

∣∣∣Fj])m .
Note that by Remark 2.4(i), we have that on the event

{
supm≥n dp+δj (F̂j,m, Fj)

p+δj ≤

η
}

,

E
[
Y

(j,m)
1

∣∣∣Fj] ≤ 2E[Zp+δj+1 ]E

[∣∣∣F̂−1j,m(U1)− F−1j (U1)
∣∣∣p+δj+1

∣∣∣∣Fj]
= ||Z||p+δj+1

p+δj+1
dp+δj+1(F̂j,m, Fj)

p+δj+1 ≤ ||Z||p+δj+1

p+δ dp+δj (F̂j,m, Fj)
p+δj+1

≤ max{1, E[Zp+δ]}η(p+δj+1)/(p+δj) =
ε

4e2/ε
.

Next, use the inequality ex ≤ 1 + xex for x ≥ 0 to obtain that

E
[
eθY

(j,m)
1 1(Y

(j,m)
1 ≤m/ logm)

∣∣∣Fj]
≤ 1 + θE

[
Y

(j,m)
1 1(Y

(j,m)
1 ≤ m/ logm) eθY

(j,m)
1 1(Y

(j,m)
1 ≤m/ logm)

∣∣∣Fj]
≤ 1 + θE

[
Y

(j,m)
1

∣∣∣Fj] eθm/ logm ≤ 1 + θeθm/ logm
ε

4e2/ε
.
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Now use the inequality 1 + x ≤ ex to see that(
E
[
eθY

(j,m)
1 1(Y

(j,m)
1 ≤m/ logm)

∣∣∣Fj])m ≤ eθεmeθm/ logm/(4e2/ε).

It follows that by choosing θ = (2/ε) logm/m we obtain

P

(
1

m

m∑
i=1

Y
(j,m)
i 1(Y

(j,m)
i ≤ m/ logm) > ε

∣∣∣∣∣Fj
)

≤ min
θ≥0

e−θεm+θεmeθm/ logm/(4e2/ε) = min
θ≥0

e
−θεm

(
1− eθm/ logm

4e2/ε

)
≤ e−2 logm(1− 1

4 ),

which in turn implies that (3.15) is bounded from above by

∞∑
m=n

e−(3/2) logm =

∞∑
m=n

m−3/2 ≤
∞∑
m=n

∫ m

m−1

1

x3/2
dx =

∫ ∞
n−1

x−3/2 dx = 2(n− 1)−1/2.

This completes the proof.

The next lemma gives the complementary estimate for the probability that any of
the {Y (j,m)

i } exceeds the truncation value in Lemma 3.3. The challenge here is the
uniformity in m of the result.

Lemma 3.4. Fix 1 ≤ p <∞. Suppose Assumption 2.3 holds and E[Zp+δ] <∞ for some
δ > 0, where Z =

∑N
i=1 ϕ(Ci). Let δj = δ(k − j)/k and qj = p+ δj for 0 ≤ j < k, fix η > 0,

and let Y (j,m)
1 be defined according to (3.9). Then, for any qj+1 < rj < qj and all t ≥ n,

P

(
sup
m≥t

logm

m
Y

(j,m)
1 > 1, sup

m≥n
dp+δj (F̂j,m, Fj)

p+δj ≤ η
)

≤ 3rj ||Z||rjrj

{
4(η1/qj + ||R(j)||qj )rj

1− rj/qj
+ 2||R(j)||rjrj

}(
log t

t

)rj/qj+1

.

Proof. To simplify the notation, let

(Q,N, {Cr}r≥1, {Ur}r≥1) =
(
Q

(j+1)
1 , N

(j+1)
1 , {C(j+1)

(1,r) }r≥1, {U
(j+1)
(1,r) }r≥1

)
.

Next, note that

sup
m≥t

logm

m
Y

(j,m)
1 = sup

m≥t

logm

m

(
N∑
r=1

ϕ(Cr)
∣∣∣F̂−1j,m(Ur)− F−1j (Ur)

∣∣∣)p+δj+1

≤

(
N∑
r=1

ϕ(Cr) sup
m≥t

(
logm

m

)1/(p+δj+1) ∣∣∣F̂−1j,m(Ur)− F−1j (Ur)
∣∣∣)p+δj+1

=

(
N∑
r=1

ϕ(Cr)W
(j,t)
r

)p+δj+1

,

where

W (j,t)
r = sup

m≥t

(
logm

m

)1/(p+δj+1) ∣∣∣F̂−1j,m(Ur)− F−1j (Ur)
∣∣∣ .

Now, let Fj = σ(Ej), where Ej is given by (3.1), and note that

P

(
sup
m≥t

logm

m
Y

(j,m)
1 > 1, sup

m≥n
dp+δj (F̂j,m, Fj)

p+δj ≤ η
)
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≤ P

(
N∑
r=1

ϕ(Cr)W
(j,t)
r > 1, sup

m≥n
dp+δj (F̂j,m, Fj)

p+δj ≤ η

)

= E

[
P

(
N∑
r=1

ϕ(Cr)W
(j,t)
r > 1

∣∣∣∣∣Fj
)

1

(
sup
m≥n

dp+δj (F̂j,m, Fj)
p+δj ≤ η

)]
.

Moreover, if we let qj = p+ δj and use Lemma 3.2, we obtain that, conditionally on Fj ,

W (j,t)
r ≤ sup

m≥t

(
logm

m

)1/qj+1 ∣∣∣F̂−1j,m(Ur)
∣∣∣+ sup

m≥t

(
logm

m

)1/qj+1

|F−1j (Ur)|

≤ sup
m≥t

(
logm

m

)1/qj+1 (
E
[
|F̂−1j,m(Ur)|qj

∣∣∣Fj])1/qj {U−1/qjr + (1− Ur)−1/qj
}

+

(
log t

t

)1/qj+1

|F−1j (Ur)|.

Furthermore, Minkowski’s inequality gives that on the event {supm≥n dqj (F̂j,m, Fj)
qj ≤

η},

sup
m≥t

(
logm

m

)1/qj+1 (
E
[
|F̂−1j,m(Ur)|qj

∣∣∣Fj])1/qj
≤ sup
m≥t

(
logm

m

)1/qj+1
{(

E
[
|F̂−1j,m(Ur)− F−1j (Ur)|qj

∣∣∣Fj])1/qj + ||F−1j (Ur)||qj
}

= sup
m≥t

(
logm

m

)1/qj+1 {
dqj (F̂j,m, Fj) + ||R(j)||qj

}
≤
(

log t

t

)1/qj+1 {
η1/qj + ||R(j)||qj

}
.

Hence, conditionally on Fj , we have that on the event {supm≥n dqj (F̂j,m, Fj)
qj ≤ η},

W (j,t)
r ≤

(
log t

t

)1/qj+1 {
Kj

(
U−1/qjr + (1− Ur)−1/qj

)
+ |F−1j (Ur)|

}
,

where Kj , η1/qj + ||R(j)||qj <∞ by Remark 2.4(ii).

Thus, we have that on the event {supm≥n dqj (F̂j,m, Fj)
qj ≤ η}, the union bound and

Markov’s inequality yield

P

(
N∑
r=1

ϕ(Cr)W
(j,t)
r > 1

∣∣∣∣∣Fj
)

≤ P

(
N∑
r=1

ϕ(Cr)
{
Kj

(
U−1/qjr + (1− Ur)−1/qj

)
+ |F−1j (Ur)|

}
>

(
t

log t

)1/qj+1
)

≤ P

(
N∑
r=1

ϕ(Cr)KjU
−1/qj
r >

1

3

(
t

log t

)1/qj+1
)

+ P

(
N∑
r=1

ϕ(Cr)Kj(1− Ur)−1/qj >
1

3

(
t

log t

)1/qj+1
)

+ P

(
N∑
r=1

ϕ(Cr)|F−1j (Ur)| >
1

3

(
t

log t

)1/qj+1
)
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≤ 3rj
(

log t

t

)rj/qj+1
{

2E

[(
N∑
i=1

ϕ(Ci)KjU
−1/qj
i

)rj]
+ E

[(
N∑
i=1

ϕ(Ci)R
(j)
i

)rj]}
,

where by assumption qj+1 < rj < qj , and we have used the observation that Ui
D
= 1− Ui.

Finally, note that by Remark 2.4(i), we have

E

[(
N∑
i=1

ϕ(Ci)KjU
−1/qj
i

)rj]
≤ 2E[Zrj ]K

rj
j E[U

−rj/qj
1 ] =

2K
rj
j ||Z||

rj
rj

1− rj/qj

and

E

[(
N∑
i=1

ϕ(Ci)R
(j)
i

)rj]
≤ 2E[Zrj ]E

[
|R(j)|rj

]
= 2||Z||rjrj ||R

(j)||rjrj .

We conclude that

P

(
sup
m≥t

logm

m
X

(m)
1 > 1, sup

m≥n
dp+δj (F̂j,m, Fj)

p+δj ≤ η
)

≤ 3rj
(

log t

t

)rj/qj+1
{

4K
rj
j ||Z||

rj
rj

1− rj/qj
+ 2||Z||rjrj ||R

(j)||rjrj

}
.

We are now ready to prove Theorem 2.11, which states that dp+δ(F̂k,m, Fk)→ 0 a.s.
as m→∞.

Proof of Theorem 2.11. Define δj = δ(k − j)/k for 0 ≤ j ≤ k. We will prove by induction
in j that

lim
m→∞

dp+δj (F̂j,m, Fj) = 0 a.s (3.11)

for 0 ≤ j ≤ k. Since F̂0,m(x) ≡ F0,m(x) for all x ∈ R and E[|R0|p+δ] < ∞, the Glivenko-
Cantelli lemma and the strong law of large numbers yield

sup
x∈R
|F0,m(x)− F0(x)| → 0 a.s. as m→∞ and

1

m

m∑
i=1

|R(0)
i |

p+δ =

∫ ∞
−∞
|x|p+δdF0,m(x)→

∫ ∞
−∞
|x|p+δdF0(x) a.s. as m→∞.

Therefore, by Definition 6.8 and Theorem 6.9 in [33],

lim
m→∞

dp+δ0(F̂0,m, F0) = lim
m→∞

dp+δ(F0,m, F0) = 0 a.s.

Suppose now that (3.11) holds for 0 ≤ j < k. To prove that dp+δj+1
(F̂j+1,m, Fj+1)→ 0

a.s. as m → ∞, we start by constructing the random variables {(R̂(t,m)
i , R

(t)
i ) : 1 ≤ i ≤

m, 0 ≤ t ≤ k} as explained at the beginning of this section. Now note that for any
ε, η > 0,

P

(
sup
m≥n

dp+δj+1
(F̂j+1,m, Fj+1)p+δj+1 > 2p+δj+1ε

)
≤ P

(
sup
m≥n

{
dp+δj+1(F̂j+1,m, Fj+1,m) + dp+δj+1(Fj+1,m, Fj+1)

}
> 2ε1/(p+δj+1)

)
≤ P

(
sup
m≥n

dp+δj+1
(F̂j+1,m, Fj+1,m) > ε1/(p+δj+1)

)
+ P

(
sup
m≥n

dp+δj+1
(Fj+1,m, Fj+1) > ε1/(p+δj+1)

)
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≤ P
(

sup
m≥n

dp+δj+1(F̂j+1,m, Fj+1,m)p+δj+1 > ε, sup
m≥n

dp+δj (F̂j,m, Fj)
p+δj ≤ η

)
(3.12)

+ P

(
sup
m≥n

dp+δj (F̂j,m, Fj)
p+δj > η

)
(3.13)

+ P

(
sup
m≥n

dp+δj+1
(Fj+1,m, Fj+1)p+δj+1 > ε

)
. (3.14)

To analyze (3.13) note that its convergence to zero as n → ∞ is equivalent to the
a.s. convergence of dp+δj (F̂j,m, Fj) to zero as m→∞, which corresponds to the induction
hypothesis (3.11).

To show that (3.14) converges to zero as n → ∞, note that by Remark 2.4(ii) we
have E[|R(j+1)|p+δ] <∞, which implies that E[|R(j+1)|p+δj+1 ] <∞. Hence, the Glivenko-
Cantelli lemma, the strong law of large numbers, and Definition 6.8 and Theorem 6.9 in
[33] give that limm→∞ dp+δj+1

(Fj+1,m, Fj+1) = 0 a.s., which is equivalent to

lim
n→∞

P

(
sup
m≥n

dp+δj+1
(Fj+1,m, Fj+1)p+δj+1 > ε

)
= 0.

Next, to prove that (3.12) converges to zero we first define the random variables
{Y (j,m)

i : 1 ≤ i ≤ m} according to (3.9), and define the events

Ai,n =

{
sup

m≥n∨i

logm

m
Y

(j,m)
i ≤ 1

}
.

Now use (3.3) and Assumption 2.3 to obtain

P

(
sup
m≥n

dp+δj+1
(F̂j+1,m, Fj+1,m)p+δj+1 > ε, sup

m≥n
dp+δj (F̂j,m, Fj)

p+δj ≤ η
)

≤ P

(
sup
m≥n

1

m

m∑
i=1

∣∣∣R̂(j+1,m)
i −R(j+1)

i

∣∣∣p+δj+1

> ε, sup
m≥n

dp+δj (F̂j,m, Fj)
p+δj ≤ η

)

≤ P

(
sup
m≥n

1

m

m∑
i=1

Y
(j,m)
i > ε, sup

m≥n
dp+δj (F̂j,m, Fj)

p+δj ≤ η,
∞⋂
i=1

An,i

)

+ P

(
sup
m≥n

dp+δj (F̂j,m, Fj)
p+δj ≤ η,

∞⋃
i=1

Acn,i

)

≤ P

(
sup
m≥n

1

m

m∑
i=1

Y
(j,m)
i 1(Y

(j,m)
i ≤ m/ logm) > ε, sup

m≥n
dp+δj (F̂j,m, Fj)

p+δj ≤ η

)
(3.15)

+

∞∑
i=1

P

(
Acn,i, sup

m≥n
dp+δj (F̂j,m, Fj)

p+δj ≤ η
)
. (3.16)

To analyze (3.15), choose η =
(
ε−14e2/ε max{1, E[Zp+δ]}

)−(p+δj)/(p+δj+1)
and let Fj =

σ(Ej) denote the sigma-algebra generated by Ej , as given by (3.1). Note that

P

(
sup
m≥n

1

m

m∑
i=1

Y
(j,m)
i 1(Y

(j,m)
i ≤ m/ logm) > ε, sup

m≥n
dp+δj (F̂j,m, Fj)

p+δj ≤ η

)

= E

[
P

(
sup
m≥n

1

m

m∑
i=1

Y
(j,m)
i 1(Y

(j,m)
i ≤ m/ logm) > ε

∣∣∣∣∣Fj
)

1

(
sup
m≥n

dp+δj (F̂j,m, Fj)
p+δj ≤ η

)]
.

By Lemma 3.3, we obtain that on the event
{

supm≥n dp+δj (F̂j,m, Fj)
p+δj ≤ η

}
,

P

(
sup
m≥n

1

m

m∑
i=1

Y
(j,m)
i 1(Y

(j,m)
i ≤ m/ logm) > ε

∣∣∣∣∣Fj
)
≤ 2(n− 1)−1/2,
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which implies that (3.15) is bounded from above by 2(n− 1)−1/2.
To analyze (3.16) note that

∞∑
i=1

P

(
Acn,i, sup

m≥n
dp+δj (F̂j,m, Fj)

p+δj ≤ η
)

= nP

(
sup
m≥n

logm

m
Y

(j,m)
1 > 1, sup

m≥n
dp+δj (F̂j,m, Fj)

p+δj ≤ η
)

+

∞∑
t=n+1

P

(
sup
m≥t

logm

m
Y

(j,m)
1 > 1, sup

m≥n
dp+δj (F̂j,m, Fj)

p+δj ≤ η
)
.

Now set qj = p+ δj and rj = qj+1 + δ/(2k), and note that qj+1 < rj < qj ≤ p+ δ. Then,
by Lemma 3.4,

P

(
sup
m≥t

logm

m
Y

(j,m)
1 > 1, sup

m≥n
dp+δj (F̂j,m, Fj)

p+δj ≤ η
)
≤ K̃j

(
log t

t

)rj/qj+1

for any t ≥ n, where

K̃j = 3rj

∣∣∣∣∣
∣∣∣∣∣
N∑
i=1

ϕ(Ci)

∣∣∣∣∣
∣∣∣∣∣
rj

rj

{
4(η1/qj + ||R(j)||qj )rj

1− rj/qj
+ 2||R(j)||rjrj

}
<∞

by Remark 2.4(ii). It follows that (3.16) is bounded from above by

K̃jn

(
log n

n

)rj/qj+1

+ K̃j

∞∑
t=n+1

(
log t

t

)rj/qj+1

≤ K̃jn

(
log n

n

)rj/qj+1

+ K̃j

∞∑
t=n+1

∫ t

t−1

(
log x

x

)rj/qj+1

dx

= K̃jn

(
log n

n

)rj/qj+1

+ K̃j

∫ ∞
n

(
log x

x

)rj/qj+1

dx

for all n ≥ 3. Since rj/qj+1 > 1 and∫ ∞
n

(
log x

x

)rj/qj+1

dx =
(log n)rj/qj+1

(rj/qj+1 − 1)nrj/qj+1−1
(1 + o(1))

as n→∞, we conclude that (3.12) is bounded from above by

2(n− 1)−1/2 + K̃j

(
1 +

1

rj/qj+1 − 1
+ o(1)

)
(log n)rj/qj+1

nrj/qj+1−1
,

which converges to zero as n→∞. This completes the proof.

We now prove Proposition 2.13, which states the consistency of the estimators.

Proof of Proposition 2.13. The second statement of the proposition, regarding the almost
sure convergence, follows directly from Definition 6.8 and Theorem 6.9 in [33]. For the
convergence in probability we argue as follows.

Define Θk,m = 1
m

∑m
i=1 h(R̂

(k,m)
i ) and θk = E[h(R(k))]. By assumption, we have that

dp(F̂k,m, Fk) → 0 in Lp and therefore in probability, as m → ∞. Hence, for every
subsequence {mi}i≥1 there is a further subsequence {mij}j≥1 such that dp(F̂k,mij , Fk)→
0 a.s. as j →∞. Definition 6.8 and Theorem 6.9 in [33] now give that

Θk,mij
→ θk a.s. as j →∞. (3.17)
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We conclude that for any subsequence {mi}i≥1 we can find a further subsequence
{mij}j≥1 such that (3.17) holds, and therefore,

Θk,m
P−→ θk as m→∞.

The remaining two proofs in the paper correspond to Theorem 2.5 and Lemma 2.6,
which although not directly related to the population dynamics algorithm, may be of
independent interest.

Proof of Theorem 2.5. Suppose first that Assumption 2.2(A) holds. Recall that Fk(x) =

P (R(k) ≤ x). Then, for any j ∈ N+ we have

dp(Fj , Fj−1) ≤
(
E
[∣∣Φ(Q,N, {Cr}, {F−1j−1(Ur)})− Φ(Q,N, {Cr}, {F−1j−2(Ur)})

∣∣p])1/p
≤ H1/p

p

(
E
[∣∣F−1j−1(U1)− F−1j−2(U1)

∣∣p])1/p = H1/p
p dp(Fj−1, Fj−2)

≤ (H1/p
p )j−1dp(F1, F0). (3.18)

Moreover,

dp(F1, F0) ≤
(
E
[∣∣Φ(Q,N, {Cr}, {F−10 (Ur)})− Φ(Q,N, {Cr}, {0})

∣∣p])1/p
+ (E [|Φ(Q,N, {Cr}, {0})|p])

1/p

≤ H1/p
p

(
E[|R(0)|p]

)1/p
+ (E [|Φ(Q,N, {Cr}, {0})|p])

1/p
. (3.19)

It follows that for any m ∈ N+ we have

dp(Fk+m, Fk) ≤
m∑
j=1

dp(Fk+j , Fk+j−1) ≤
m∑
j=1

(H1/p
p )k+j−1dp(F1, F0)

= (H1/p
p )kdp(F1, F0)

m−1∑
j=0

(H1/p
p )j ,

which converges to zero as k → ∞ uniformly in m whenever Hp < 1 and E [|R0|p
+|Φ(Q,N, {Cr}, {0})|p] <∞. Therefore, the sequence {R(k) : k ≥ 0} is Cauchy, and since
the Wasserstein space Pp(R) metrized by dp (see Definition 6.4 in [33]) is complete by
Theorem 6.18 in [33], we have that there exists a random variable R having distribution
F∗(x) = P (R ≤ x) such that

lim
k→∞

dp(Fk, F∗) = 0.

Equation (2.3) now follows by taking m→∞ to obtain:

dp(Fk, F∗)
p = lim

m→∞
dp(Fk, Fk+m)p ≤ dp(F1, F0)p

Hk
p

(1−H1/p
p )p

and using the optimal coupling (R(k), R) = (F−1k (U), F−1∗ (U)).
We now move to the linear SFPE (1.2), for which it is known (see [22]) that R admits

the explicit representation

R =

∞∑
k=0

∑
i∈Ak

ΠiQi,

as described in Section 1.1. When conditions (i) hold we have E[R(k)] = 0 for all k ≥ 0

and the arguments used above remain valid.
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Suppose now that conditions (ii) hold, in which case we can take R(k) =∑k−1
j=0

∑
i∈Aj ΠiQi +

∑
i∈Ak ΠiR

(0)
i , where the {R(0)

i : i ∈ U} are i.i.d. copies of R(0).
Therefore, Minkowski’s inequality gives

E
[
|R(k) −R|p

]
≤ E

 ∞∑
j=k

∑
i∈Aj

|Πi||Qi|+
∑
i∈Ak

|Πi||R(0)
i |

p
≤

 ∞∑
j=k

(E [(Wj)
p
])
1/p

+
(
E
[(
Wk(R(0))

)p])1/pp

,

where Wj ,
∑

i∈Aj |Πi||Qi| and Wk(R(0)) ,
∑

i∈Ak |Πi||R(0)
i |. Now use Lemma 4.4 in [22]

to obtain that under conditions (ii) there exist constants Kp,K
′
p <∞ such that

E[|Wj |p] ≤ Kp(ρ1 ∨ ρp)j and E[|Wk(R(0))|p] ≤ K ′p(ρ1 ∨ ρp)k,

where ρβ = E
[∑N

i=1 |Ci|β
]
. Hence,

E
[
|R(k) −R|p

]
≤

((Kp)
1/p + (K ′p)

1/p)

∞∑
j=k

(ρ1 ∨ ρp)j/p
p

≤

(
(Kp)

1/p + (K ′p)
1/p

1− (ρ1 ∨ ρp)1/p

)p
(ρ1 ∨ ρp)k−1.

This completes the proof.

Finally, we provide the proof of Lemma 2.6.

Proof of Lemma 2.6. By (3.18) we have for any j ∈ N+,

dp(Fj , Fj−1) ≤ (H1/p
p )j−1dp(F1, F0),

and by (3.19),

dp(F1, F0) ≤ H1/p
p

(
E[|R(0)|p]

)1/p
+ (E [|Φ(Q,N, {Cr}, {0})|p])

1/p
, A′p.

Hence,

dp(Fk, F0) ≤
k∑
i=1

dp(Fi, Fi−1) ≤ A′p
k∑
i=1

(H1/p
p )i−1,

and we obtain that(
E
[
|R(k)|p

])1/p
≤
(
E
[
|F−1k (U)− F−10 (U)|p

])1/p
+
(
E
[
|R(0)|p

])1/p
= dp(Fk, F0) +

(
E
[
|R(0)|p

])1/p
≤A′p

k∑
i=1

(H1/p
p )i−1 +

(
E
[
|R(0)|p

])1/p
≤
(
A′p +

(
E
[
|R(0)|p

])1/p) k−1∑
i=0

(H1/p
p )i.
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