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Abstract. We study the evolution of opinions on a directed network with community structure. Individuals
update their opinions synchronously based on a weighted average of their neighbors’ opinions, their own
previous opinions, and external media signals. Our model is akin to the popular Friedkin-Johnsen model,
and is able to incorporate factors such as stubbornness, confirmation bias, selective exposure, and multiple
topics, which are believed to play an important role in the formation of opinions. Our main result shows
that, in the large graph limit, the opinion process concentrates around its mean-field approximation for any
level of edge density, provided the average degree grows to infinity. Moreover, we show that the opinion
process exhibits propagation of chaos. We also give results for the trajectories of individual vertices and the
stationary version of the opinion process, and prove that the limits in time and in the size of the network
commute. The mean-field approximation is explicit and can be used to quantify consensus and polarization.

1. Introduction

As the consumption of information through virtual social networks has grown, the number of news outlets
has multiplied, and individuals increasingly find ways to disseminate their opinions through online forums
and video sharing platforms, populations around the world have become heavily polarized on a number of
cultural and political issues [48, 9, 44, 46]. The asymmetry of the information from one source to another
has solidified positions into ideological bubbles with little in common with each other. The formation of
such bubbles occurs through a combination of cognitive biases that allow individuals to choose to listen
only to opinions that conform to their preconceptions, as well as reject people who espouse views contrary
to their own.

Our collective need to understand the mechanisms behind polarization and propose ideas to reduce its
negative effects has inspired much of the current literature in the social sciences [48, 9, 44, 46, 1, 27, 29].
Simultaneously, researchers in the mathematical and physical sciences have proposed models that can
capture and explain phenomena such as consensus and polarization, often focusing on one or two modeling
features at a time. In this work, we analyze a model based on the classical DeGroot [19] and Friedkin-
Johnsen [25] models, that can simultaneously capture features such as:

a.) Confirmation bias: the tendency to search for, interpret, favor, and recall information in a way that
confirms or supports one’s prior beliefs or values;

b.) Selective exposure: individuals’ tendency to favor information which reinforces their pre-existing
views while avoiding contradictory information;
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c.) Community structure: when a network divides naturally into groups of nodes with dense connections
internally and sparser connections between groups;

d.) Bots: software applications that run automated tasks over the Internet on a large scale, usually
with the intent of imitating human activity;

e.) Multiple topics: the analysis of the evolution of opinions on multiple (possibly correlated) topics at
a time.

A single-topic version of this model was recently analyzed in [22] on general complex networks without
community structure. This work focused on sparse (i.e., bounded degree) graphs, where the graph’s local
behavior determines the evolution of the opinion process. Its main results show the power that the media
has in framing people’s opinions, and how selective exposure alone can explain much of the polarization
that we observe in many societies today. One of the main features of the model in [22], as well as of
the model studied here, is that, due to its linearity, it produces computable formulas that can be used
to quantify the effect of various model parameters on the evolution of opinions, and potentially, of any
intervention one may want to propose.

The current work studies a more general opinion model than the one analyzed in [22] on sparse graphs, but
rather than focus on its explanatory/predictive power, it computes its limiting behavior on denser graphs
with community structure. From a modeling point of view, it is often hard to decide whether a real-world
network is sparse with a large average degree, or, say, semi-sparse, with an average degree that grows slowly
with the size of the graph. Given the lack of precise boundaries, we believe it is interesting to understand
the difference between sparse approximations and dense, or mean-field, approximations. At a high level,
sparse approximations are determined by the entire local neighborhood of each vertex, while mean-field
approximations are obtained by replacing the individual contribution of each neighbor with their average
behavior, which is justified only when vertices in the graph have a sufficiently large number of neighbors.

Our main interest in this paper is to show that there is a single mean-field approximation for our opinion
model that works for graphs with any density level other than sparse. However, the precision level of this
approximation does exhibit a phase transition when the average degree crosses the familiar connectivity
threshold log n (with n the number of vertices in the graph), and seamlessly explains how the model’s
behavior transitions into the sparse regime, where local approximations such as those found in [22] take
over. In fact, our analysis of the semi-sparse regime is based on the same local approximation that is
used for sparse graphs, which when the average degree grows with n further simplifies to the mean-field
approximation obtained in the dense case. The transition into the sparse regime can also be seen from
the point of view of the trajectories for different individuals, which in the setting of this paper exhibit
propagation of chaos (i.e., asymptotically independent trajectories). In contrast, on sparse graphs, only a
weaker form of propagation of chaos holds, which states that only finite sets of uniformly chosen trajectories
are asymptotically independent. The in-depth analysis of the model’s explanatory and predictive power
will be covered in a separate set of work.

This paper is organized as follows. In Section 2 we introduce our model for the evolution of opinions on a
large complex network with community structure, as well as the random graph family used in our analysis.
In Section 3 we present our main results, which give an approximation for the stationary opinion process
that is valid for any density level of the underlying graph other than sparse. In Section 4 we discuss
related models for opinion dynamics, as well as the technical aspects of our work, such as mean-field
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approximations and local approximations for random graphs. Finally, in Section 5 we give all the proofs
for the theorems in Section 3.

2. The Model

Our opinion model consists of two parts: 1) the opinion process defined on a fixed directed graph, and 2)
the random graph model used to represent the underlying social network.

2.1. The opinion process on a fixed graph. Consider a directed graph G = (V,E), where individuals
in the social network are represented by vertices in the set V , and a directed edge (i, j) ∈ E means that
individual j listens to the opinion of individual i; |V | denotes the cardinality of the set. Each individual
in the set V is assumed to belong to one of K communities, and has a set of attributes that will remain
fixed throughout the evolution of the opinion process. We assume we have ` topics, with ` a finite number,
and individuals’ opinions on each topic take values on the interval [−1, 1]. The main object of study is the

opinion process {R(k) : k ≥ 0}, taking values on [−1, 1]|V |×`, where R
(k)
ij denotes the expressed opinion of

individual i ∈ V on topic j ∈ {1, . . . , `} at time k ∈ N = {0, 1, 2, . . . }. We will use R
(k)
i to denote the ith

row of R(k), which corresponds to the multi-topic opinion vector of individual i at time k.

Before we describe the updating rule for the process {R(k) : k ≥ 0}, we need to describe the vertex attributes
that determine how each individual engages with its neighbors and incorporates their own prejudices. To
start, each individual i ∈ V has an attribute vector and an extended attribute vector of the form:

ai = (Ji,qi) ∈ {1, . . . ,K} × [−1, 1]` and yi = (Ji,qi,bi) ∈ {1, . . . ,K} × [−1, 1]` × R|V |+ ,

where Ji denotes the community to which individual i belongs, qi = (qi1, . . . qi`) is a row vector of pre-
conceived ideas or internal beliefs on each of the ` topics, and bi = (bi1, . . . , bi|V |) is a nonnegative row vector
of “unnormalized” weights, where bij is the weight that individual i gives to individual j’s expressed opinions
(these weights will later be normalized to add up to one). The extended attribute vectors {yi : i ∈ V } do
not change throughout the evolution of the process, reflecting the reasonable modeling assumption that
they change at a much longer time-scale than the expressed opinions process. To make them easy to
identify, all vectors are written in boldface.

Given the set of edges E, we now construct the (normalized) weights according to:

cij =
bij1(j → i)∑
l∈V bil1(l→ i)

1

(∑
l∈V

bil1(l→ i) > 0, i 6= j

)
, i, j ∈ V, (2.1)

where j → i indicates that (j, i) ∈ E. The model also requires two parameters, c, d ∈ [0, 1], such that
0 < c+ d ≤ 1 and d > 0. The parameter c controls the amount of value that individuals give to the social
network, and d controls the amount of weight they give to external influences, e.g., media and political
leaders. Although one can easily make the parameters c and d depend on each individual, for simplicity
we interpret them as average weights and keep them the same across all individuals. Our assumption
that d > 0 is important both to the explanatory/predictive power of the model, and to its mathematical
properties, as we will see later.

Having described the attributes of each individual, we can now describe the evolution of the opinion process.
At time zero, we initialize the process with a matrix R(0) ∈ [−1, 1]|V |×` chosen according to some initial
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distribution µ0 such that {R(0)
i : Ji = r} are identically distributed for each 1 ≤ r ≤ K. At each time step

k, each individual i listens to an external signal W
(k)
i ∈ [−1, 1]` (row vector), and updates their opinion

according to:

R
(k+1)
i = c

∑
j∈V

cijR
(k)
j + W

(k+1)
i + (1− c− d)R

(k)
i , k ≥ 0, i ∈ V. (2.2)

The external signals {W(k)
i : i ∈ V, k ≥ 0} are assumed to be independent of each other, and of the initial

opinion matrix R(0). In order to include the possibility of having vertices with no inbound neighbors, it is
convenient to assume that the external signals take the form:

W
(k)
i = dZ

(k)
i + cqi1

(
d−i = 0

)
, (2.3)

where d−i =
∑

j∈V 1(j → i) is the number of inbound neighbors of vertex i and {Z(k)
i : k ≥ 0} can be

interpreted as media signals. This form of the external signals replaces the contribution of the neighbors
with the vertex’s internal belief when it has no inbound neighbors. For a vertex i ∈ V having attribute

vector ai, the media signals {Z(k)
i : k ≥ 0} are assumed to be i.i.d. with some distribution ν(ai). If needed,

one could make ν depend on the extended attribute vector of each vertex, and even add more vertex
properties to the extended attribute vector, but for simplicity we omit this extension here. We use W (k)

to denote the |V | × ` matrix whose ith row is W
(k)
i .

Under the assumption that d > 0, we will see that the process {R(k) : k ≥ 0} has a stationary distribution,

i.e., R(k) ⇒ R as k → ∞, where ⇒ denotes weak convergence on [−1, 1]|V |×`. This paper focuses on the

behavior of both the trajectories {R(k)
i : k ≥ 0} and the stationary opinion matrix R.

2.2. The network. Although the opinion process itself is defined on a fixed directed graph, our results
are based on analyzing the process on a random graph sequence {Gn : n ≥ 1}, where Gn = (Vn, En). From
a modeling point of view, one can think of the fixed social network of interest as simply one realization
from the random graph model being used. For simplicity, we assume |Vn| = n.

In order to model the community structure and individual-level confirmation bias, we use as the basis for
our model a directed stochastic block model (dSBM) with K communities. Each individual in i ∈ Vn has
a community label Ji, and given the community labels Jn = {Ji : i ∈ Vn}, edge (i, j) is present in the
graph with probability:

p
(n)
ij =

κ(Ji, Jj)θn
n

∧ 1, i, j ∈ Vn, (2.4)

independently of everything else, where κ is a nonnegative kernel (equivalently, a nonnegative matrix in
RK×K), and θn is a density parameter.

Since our interest in this paper is to obtain approximations for semi-sparse to dense graphs, it is not
important to incorporate degree-corrections into our model other than those produced by the kernel κ. In
the sparse setting, where one can closely model the inhomogeneity of the network (e.g., scale-free degree
distributions), using a degree-corrected dSBM would be more appropriate.
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The proportion of vertices belonging to each community is controlled by the probability vector (π
(n)
1 , . . . , π

(n)
K ),

so that a proportion π
(n)
r of the vertices in Vn belong to community r. The main assumption on the dis-

tribution of the community labels is given below.

Assumption A. There exists a probability vector π = (π1, . . . , πK) with πr > 0 for all 1 ≤ r ≤ K, such
that

π(n)
r =

1

n

n∑
i=1

1(Ji = r)
P−→ πr,

as n→∞, for each r ∈ {1, . . . ,K}.

Next, for each r ∈ {1, . . . ,K} let Fr be a distribution on [−1, 1]`. For each vertex i ∈ Vn sample its internal
belief vector Qi according to FJi , where Ji is the community label of vertex i.

Finally, to complete the description of the model on a random graph, we sample each of the unnormalized
weights {Bij : i, j ∈ Vn} conditionally independent of each other given the community labels {Ji : i ∈ Vn},
with Bij sampled from a distribution GJi,Jj on the interval [0, H], with H a finite constant. Note that the
distribution of the unnormalized weights is allowed to depend on the communities to which each vertex
belongs, which means one can give less weight to opinions coming from members of a different community.
This is a form of confirmation bias [38, 39, 20], applied to the individual rather than the opinion itself.

Remarks 2.1. We end this section by explaining how one can choose the various parameters to model many
of the features that social scientists believe influence the evolution of opinions. Since the full explanatory
and predictive power of the model will be discussed in a future companion paper, we give here only a
high-level description of what our model can be used for.

a.) The kernel κ and the unnormalized weights {Bij : i, j ∈ Vn} can be used to model a form of confir-
mation bias that affects the individuals directly, i.e., by both controlling the number of neighbors
that an individual has who belong to communities different from their own, and by discounting their
opinions. Note that this form of confirmation bias depends on neither the topic nor the specific
expressed opinions being shared at any point. Other ways of modeling confirmation bias directly
applied to the expressed opinions being shared are discussed in Section 4.

b.) A direct way in which our model incorporates selective exposure is through the choice of the dis-
tribution ν(Ai) for the media signals, where Ai = (Ji,Qi). For example, if we believe that each
community has its own preferred media outlets, e.g., news and political commentators, then we can
choose the distribution ν to depend on the community label Ji. Moreover, if we want to model the
human tendency to reject information that contradicts our internal beliefs or pre-existing views, we
can do so by allowing ν to depend on the internal belief vector Qi (e.g., a person who listens to an
outlet that has extreme views on topics 1 and 2, but only agrees with the outlet on topic 1, may
choose to ignore the media signal for topic 2).

c.) The dSBM can also be used to model the presence of bots, targeted or not, by creating additional
communities. A targeted bot chooses who to send its messages to based on their community
label. Since bots are not real people, they are not influenced by what they hear from their inbound
neighbors, so we can model them to have no inbound neighbors by adjusting the kernel κ accordingly.
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3. Main Results

We are now ready to present the main results of the paper. We assume from here onwards that we
are working on a probability space (Ω,F , P ) where we can construct the entire random graph sequence
{Gn : n ≥ 1} along with their vertex marks, as well as all the external signals needed to define the opinion
process on each of the graphs in the sequence. We use E[·] to denote the corresponding expectation. The

opinion process {R(k) : k ≥ 0} is constructed on a fixed random graph Gn = (Vn, En) from the sequence,
but for simplicity the dependence on n is not explicit in the notation.

As mentioned earlier, our work shows that there is a unique approximation for the opinion process {R(k) :
k ≥ 0} under the large graph limit n → ∞, that works for all choices of the density parameter θn.
The phase transition occurs only in the precision level of the approximation, around the threshold θn =
log n. Interestingly, the proof technique is also significantly different above and below the threshold log n,
reflecting the fact that as the density parameter θn drops below the threshold, a vertex’s entire neighborhood
becomes increasingly important. To be able to drop the minimum in (2.4) and simplify our results, we
assume throughout the paper that

lim sup
n→∞

max
1≤r,s≤K

κ(r, s)θn
n

≤ 1.

The process {R(k) : k ≥ 0} will be approximated by another process {R(k) : k ≥ 0} whose main char-

acteristic is that its rows {R(k)
i : k ≥ 0, i ∈ Vn} are conditionally independent of each other given the

community labels. We will now describe the approximating process, leaving an intuitive derivation of how
this process is obtained to Section 5.

To start, define the matrix M ∈ [0, 1]K×K whose (r, s)th component is given by

mrs =
πsβr,sκ(s, r)

π1βr,1κ(1, r) + · · ·+ πKβr,Kκ(K, r)
· 1 (π1βr,1κ(1, r) + · · ·+ πKβr,Kκ(K, r) > 0) , (3.1)

where βr,s = E[Bij |Ji = r, Jj = s]. Note that since one may want bot communities to have no inbound
neighbors, M may have zero rows. Define also vr,s = E[B2

ij |Ji = r, Jj = s]. Recall that the media signals,

given by {Z(k)
i : k ≥ 0, i ∈ Vn}, are independent of each other, with {Z(k)

i : k ≥ 0} conditionally i.i.d. given

Ai, with distribution ν(Ai). The external signals {W(k)
i : k ≥ 0, i ∈ Vn} follow the form in (2.3). We will

use W̄ ∈ [−1, 1]K×` to denote the matrix whose rth row is E[W
(0)
i |Ji = r], and R̄ ∈ [−1, 1]K×` to denote

the matrix whose rth row is E[R
(0)
i |Ji = r].

The approximating process {R(k) : k ≥ 0} is given by: R(0) = R(0) and

R(k)
i =

k−1∑
t=0

(1− c−d)tW
(k−t)
i +1(k ≥ 2)

k−1∑
t=1

t∑
s=1

as,t(M
sW̄ )Ji•+

k∑
s=1

as,k(M
sR̄)Ji•+(1− c−d)kR

(0)
i , (3.2)

for k ≥ 1 and i ∈ Vn, where as,t =
(
t
s

)
(1 − c − d)t−scs and Hj• denotes the jth row of matrix H (H•j

denotes the jth column). Note that conditionally on the vertex attributes {Ai : i ∈ Vn}, (3.2) takes the
form of an autoregressive process of order one, without any interactions among different vertices. Before
stating the main theorems, we will need a few additional definitions.
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For a vector x ∈ Rn, we use the standard lp-norm ‖ · ‖p, p ≥ 1, namely,

‖x‖p :=

(
n∑
i=1

|xi|p
)1/p

and ‖x‖∞ := max
1≤i≤n

|xi|.

Applied to a matrix A ∈ Rn×`, ‖ · ‖p is the induced norm

‖A‖p := sup
‖x‖6=0

‖Ax‖p
‖x‖p

.

We will also use the notation

µ(n)
r =

K∑
s=1

βr,sπ
(n)
s κ(s, r) and ν(n)

r =
K∑
s=1

vr,sπ
(n)
s κ(s, r),

as well as

∆n = max
r∈I

ν
(n)
r

(µ
(n)
r )2

and Λn = max
r∈I

µ
(n)
r

ν
(n)
r

,

where I = {r ∈ {1, . . . ,K} :
∑K

s=1mrs > 0} is the set of non-zero rows of M . Note that both ∆n and
Λn converge to positive constants as n → ∞ under Assumption A. We use En[·] = E[·|Jn] to denote
the conditional expectation given the community labels, and Pn to denote its corresponding conditional
probability. The first main result of the paper is given below.

Theorem 3.1. Define the process {R(k) : k ≥ 0} according to (3.2). Suppose θn ≥ (6HΛn)2∆n log n.
Then, there exists a constant Γ <∞ such that

sup
k≥0

En
[∥∥∥R(k) −R(k)

∥∥∥
∞

]
≤ Γ

(√
log n

θn
+ En

)
, (3.3)

where En := max1≤r,s≤K

∣∣∣π(n)
s πr−πsπ(n)

r

π
(n)
r πs

∣∣∣. Moreover, for any sequence θn satisfying θn →∞ as n→∞,

sup
k≥0

max
i∈Vn

En
[∥∥∥R(k)

i −R(k)
i

∥∥∥
1

]
P−→ 0, (3.4)

as n→∞.

Remarks 3.1. a.) Since maxi∈Vn En
[∥∥∥R(k)

i −R(k)
i

∥∥∥
1

]
≤ En

[∥∥R(k) −R(k)
∥∥
∞
]
, Theorem 3.1 shows

that the approximation is stronger when θn/ log n → ∞, and it gradually weakens as the rate at
which θn grows drops below the critical rate log n. Intuitively, this can be explained by noting that
the average number of neighbors that any vertex has grows with the density parameter θn. The larger
the number of neighbors, the more their aggregate contributions behave as the average opinion. The
weakest result is valid for any θn →∞, regardless of how slow the growth is. However, it is worth
pointing out that when θn is bounded, the approximation fails, and the correct approximation is the
sparse approximation, which is determined by the local neighborhood of each vertex (see Theorem 2
in [22]). The threshold log n determining the strength of the approximation also appears in [11, 10]
and [3], where the authors study other processes on graphs with various edge density levels.
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b.) For each i ∈ Vn, the sequence {R(k)
i : k ≥ 0} is called the trajectory of vertex i. Since the rows

in the limiting process {R(k) : k ≥ 1} are independent of each other, Theorem 3.1 yields that the

trajectories of the process {R(k) : k ≥ 0} are asymptotically independent; in other words, the process
exhibits propagation of chaos (note that only particles in the same community are exchangeable).
Since

1

n

n∑
i=1

sup
k≥0

En
[∥∥∥R(k)

i −R(k)
i

∥∥∥
1

]
≤ sup

k≥0
max
i∈Vn

En
[∥∥∥R(k)

i −R(k)
i

∥∥∥
1

]
P−→ 0, n→∞,

the second statement in Theorem 3.1 implies pointwise propagation of chaos in the sense of Defi-
nition 4.1 in [13], throughout the entire range of k. We point out that this is not the case in the
sparse regime, where the local approximation given by Theorem 2 in [22] corresponds to a process
whose trajectories are not independent of each other, and the trajectories of vertices close to each
other may in fact have significant dependence.

c.) Note that since
∥∥R(k) −R(k)

∥∥
∞ is bounded, Theorem 3.1 implies that for log n/θn → 0, we have

that for each k ≥ 0, ∥∥∥R(k) −R(k)
∥∥∥
∞

P−→ 0, n→∞.

An alternative way of understanding the approximation is to look at the empirical measure

1

n

n∑
i=1

1(R
(0)
i , . . . ,R

(k)
i ) ∈ A),

for any measurable set A ⊆ ([−1, 1]`)k+1. Written in this way, one can identify this measure as the
conditional law of a typical opinion, understood as the trajectory of a uniformly chosen vertex In ∈ Vn,
given the underlying graph Gn = (Vn, En) and the entire process {R(t) : 0 ≤ t ≤ k}. In our model, the
distribution of the typical trajectory converges as n → ∞ to a law that depends only on the community
label. Since in the random graph literature the typical vertex converges to the distribution of the root of
a rooted graph (usually a branching tree), the notation we use in the following theorem is consistent with
that used in the sparse regime, where ∅ denotes the root of the limiting graph. We point out that in this
paper, the limiting graph is not locally finite, so the notion of local weak convergence (see [49]) does not
apply.

Theorem 3.2. Fix k ≥ 0 and define the random variables ({R(m)
∅ : 0 ≤ m ≤ k},J∅) according to:

P (J∅ = s) = πs, 1 ≤ s ≤ K,

P
(

(R(0)
∅ ,R(1)

∅ , . . . ,R(k)
∅ ) ∈ A

∣∣∣J∅ = s
)

= Pn
(

(R(0)
i ,R(1)

i , . . . ,R(k)
i ) ∈ A

)
, A ⊆ ([−1, 1]`)k+1,

where {R(k)
i : k ≥ 0} is given by (3.2) and i is any vertex belonging to community s. Define Vk,i ∈

[−1, 1]`×(k+1) to be the matrix having jth column (Vk,i)•j = (R
(j−1)
i )>, and let Vk ∈ [−1, 1]`×(k+1) be the

matrix having jth column (Vk)•j = (R(j−1)
∅ )>. Then, for any 1 ≤ r ≤ K and any bounded and continuous
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(with respect to the ‖ · ‖1 operator norm) function f : [−1, 1]`×(k+1) → R, we have

1

n

n∑
i=1

f (Vk,i) 1(Ji = r)
P→ E [f (Vk) 1(J∅ = r)]

as n→∞. Furthermore, for any arbitrary collection of vertices {i1, . . . , im} ⊆ Vn having community labels
{r1, . . . , rm}, m ≥ 1, and any set of continuous (with respect to ‖ · ‖1) bounded functions {f1, . . . , fm} on

[−1, 1]`×(k+1), k ≥ 0, we have

En

 m∏
j=1

fj
(
Vk,ij

) P−→
m∏
j=1

E [fj (Vk)| J∅ = rj ] , n→∞.

Remark 3.1. The last statement in Theorem 3.2 is closely related to Theorem 2.6.B in [23], which states
that trajectories of a finite set of vertices uniformly chosen at random are asymptotically independent of
each other, a limited form of propagation of chaos that holds only for vertices that are likely to be far from
each other. However, the last statement in Theorem 3.2 allows the vertices to be chosen arbitrarily.

The last set of results in the paper refers to the stationary behavior of the Markov chain {R(k) : k ≥ 0}.
Recall that R denotes a matrix in [−1, 1]n×` having the stationary distribution of the chain, and RIn

denotes a uniformly chosen row of the matrix R. Note that RIn represents the typical stationary opinion
on the graph, across all ` topics. Our last theorem provides a characterization for RIn when n is large, by
establishing the existence of a random variable R∅ ∈ [−1, 1]` such that

RIn ⇒R∅, n→∞,

where ⇒ denotes weak convergence on [−1, 1]`. Since R∅ also turns out to be the weak limit of {R(k)
∅ :

k ≥ 0} as k →∞, our results show that we can exchange the limits in k (time) and n (number of vertices).

Theorem 3.3. Define the random variables (R∅,J∅) according to:

P (R∅ ∈ A|J∅ = r) = Pn

( ∞∑
t=0

(1− c− d)tW
(t)
i +

∞∑
t=1

t∑
s=1

as,t(M
sW̄ )Ji ∈ A

∣∣∣∣∣ Ji = r

)
, A ⊆ [−1, 1]`,

P (J∅ = r) = πr, 1 ≤ r ≤ K.
Then, there exists a coupling (RIn , JIn ,R∅,J∅), such that for any continuous (with respect to ‖ · ‖1) and
bounded function f : [−1, 1]` → R, we have for any 1 ≤ r ≤ K,

En [‖RIn −R∅‖1]
P→ 0 and

1

n

n∑
i=1

f(Ri)1(Ji = r)
P→ E[f(R∅)1(J∅ = r)]

as n→∞. Furthermore, for any arbitrary collection of vertices {i1, . . . , im} ⊆ Vn having community labels
{r1, . . . , rm}, m ≥ 1, and any set of continuous (with respect to ‖ · ‖1) bounded functions {f1, . . . , fm} on
[−1, 1]`, we have

En

 m∏
j=1

fj(Rij )

 P−→
m∏
j=1

E[fj(R∅)|J∅ = rj ], n→∞.
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Remark 3.2. Note that the shape of R∅ is simply the limit as k →∞ of R(k)
In

after a time reversal of the

external signals, i.e., W
(k−t)
In

D
= W

(t)
In

.

The proofs of all the theorems are contained in Section 5.

4. Related Literature

Interest in the evolution of opinions on social networks dates back to the 50’s, with the work of French
[24] and DeGroot [19]. The model in [19] corresponds in our notation to the recursion R(k+1) = AR(k),

for a given R(0) and A = cC + (1− c)I, with C = (cij) as in (2.1) (the model is for a single topic, hence
the vectors instead of matrices). The main question studied in [19, 8] was the existence of consensus,

seen as a limit R = limk→∞R(k) whose components are all equal to each other (a consequence of the
Perron-Frobenius theorem when the matrix A is irreducible and aperiodic). In [25], Friedkin and Johnsen

extended the model to allow disagreement by considering the recursion R(k+1) = AR(k) + Q, with Q a
deterministic vector, which is a special case of our model. The models in [51] replace the deterministic

Q with a sequence of random signals {W(k) : k ≥ 0}, as we do, although they are independent of the
underlying network, since they are used to model miscommunication. A more recent generalization of
the DeGroot model was given in [16], where the authors introduced the concept of biased assimilation,
namely the tendency of individuals to pull their opinion towards their initial opinion once presented with
inconclusive evidence, in order to make the repeated averaging scheme of DeGroot lead to polarization.
Another closely related model that is capable of introducing confirmation bias by rejecting an opinion from
a neighbor when it is too different from their own expressed opinion is the Hegselmann-Krause model [42],
which due to its non-linear updating rule is not covered by our analysis. All these models are defined on a
fixed graph, so the stochastic matrix A is deterministic, unlike ours, where we use both the updating rules
of the opinion process and the properties of the underlying graph to explain complex phenomena. Other
variants of the DeGroot and Friedkin-Johnsen models that incorporate multiple topics and time-varying
self-weights (e.g., d in our model is allowed to be different for each vertex and change with time) are given
in [31, 41, 47].

While all the models mentioned above are defined on discrete time with synchronous updating rules, there
is a different family of popular opinion models where interactions occur one at a time, at either random
or deterministic times. Among those are the bounded confidence models, such as the Deffuant-Weisbuch
model [50, 18, 17]. In this model, at each time step a pair of neighboring individuals is randomly selected.
Then, the two neighbors update their opinions according to a simple linear equation if, and only if, the
difference of their current opinions is less than a specified threshold. This model, like the Hegselmann-
Krause model, is meant to explain fragmentation and polarization through a direct confirmation bias. Its
non-linearity and lack of an external signal means that its analysis is usually done using the methods of
interacting particle systems or numerical stochastic simulation [30, 6, 34, 15, 28, 37]. A more recent analysis
of the Deffuant-Weisbuch model that takes into account the network’s topology is [21]. Our model is not
meant to tackle confirmation bias at the level of the opinions being shared, but rather at the level of the
individuals who share them, and the main appeal of our model is that it accounts for the combined effects
of the network topology, the media framing effect, and people’s selective exposure, while still producing
computable formulas for means and variances for the opinion process.
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As mentioned in the introduction, the main focus of this paper is not the explanatory and predictive
power of our model, but rather its behavior on graphs of various levels of edge density. So, before we
discuss that aspect of the related literature, we just want to mention that there is yet another family of
classical opinion models taking values on finite sets (rather than continuous intervals), like the voter model
[36], where opinions can be either 0 or 1, or the Axelrod model [4], where each vertex has a fixed set of
features and traits, leading to a notion of “similarity” between vertices. The former can be used to model
consensus through asynchronous updates, whereas the latter achieves a diversity of opinions by using a
trait updating rule that depends on how similar the features of the two interacting vertices are, a concept
known as homophily. The underlying graph in both of these models is usually a lattice, although the
voter model has also been analyzed in heterogeneous graphs in [45]. The work in [43] contains a review of
interesting variants of the voter model.

Our opinion model falls in the category of interacting particle systems in discrete time with synchronous
updates and continuous state space, although only vertices in the same community are exchangeable.
The approximating process {R(k) : k ≥ 0} is a classical mean-field approximation, where the complex
interactions between neighboring vertices are replaced with their average behavior. Our main theorem
proves propagation of chaos by coupling the trajectories, as described in the surveys [13, 12]. The literature
on mean-field approximations is so vast, and covers such a wide range of fields, that it would be impossible
to mention all the related models for which results similar to ours have been derived. The closest work to
the techniques used in this paper is the analysis of the personalized PageRank algorithm done in [3], where
a stochastic block model is the only source of randomness in what otherwise would be a deterministic
linear recursion. The main results in [3] are closely related to our Theorem 3.1 for density parameters
θn/ log n → ∞, albeit for a different recursion and under an l2-norm (rather than the l∞-norm we use).
Our work shows that the approximation itself continues to hold beyond the log n threshold, for any θn →∞,
but with lesser precision (a weaker norm). Relative to the majority of mean-field results in the interacting
particles literature, our work is different in the explicit role that the underlying random graph plays, its
ability to seamlessly cover the entire range of edge densities (other than the sparse case), the explicit
characterization of the limiting process as the number of particles goes to infinity, and the exchange of
limits with the stationary version of the limiting process. Other works that analyze stochastic processes
on graphs with various levels of edge density are [11], which studies the supermarket model on graphs, and
[10], which analyzes weakly interacting diffusions on time varying random graphs. It is also worth pointing
out that mean-field approximations for bounded confidence models such as the Deffuant-Weisbuch model
and some of its variants have been given in [34, 15, 28].

Finally, we would like to point out that the analysis of our model in the semi-sparse regime, i.e., θn below
the log n threshold, is based on a coupling of the underlying random graph with a marked multi-type
branching process. This technique is based on the notion of local weak convergence of random graph
sequences [7, 2] (see also [49]). Although for non-sparse random graphs the local weak limit is not a locally
bounded graph, the dSBM can still be coupled with a marked multi-type Galton-Watson tree (with average
degree that grows with n). In fact, a strong coupling, in the sense of the intermediate coupling in [40], still
holds, which is what enables the work in this paper. For sparse graphs, local weak convergence or strong
couplings have been used to study the PageRank algorithm in [14, 26, 5], general discrete-time stochastic
recursions on sparse graphs in [23], and interacting diffusions in [32, 33]. The techniques in this paper
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will likely extend to more general classes of stochastic recursions on random graphs with growing edge
densities.

5. Proofs

This section contains the proofs for all the theorems in Section 3. The proof of our main result, Theorem 3.1,
requires two different approaches depending on the speed at which θn →∞, however, both approaches start
with the same intermediate approximation. We will start by presenting the intermediate approximation in
this section, and then complete the analysis for the two different density regimes; in Section 5.1 for the case
when θn ≥ γ log n for some γ > 0, and in Section 5.2 for the case when lim supn→∞ log n/θn > 0. Finally,
as mentioned earlier, Theorems 3.2 and 3.3 are consequences of Theorem 3.1, so we give their proofs in
Section 5.3.

Recall that the opinion process will be constructed on a fixed directed graph Gn sampled according to
Section 2.2, where each vertex i ∈ Vn has an attribute Ai = (Ji,Qi) and an extended attribute Yi =
(Ji,Qi,Bi), with Bi = (Bij)1≤j≤n the unnormalized weights.

In order for us to derive the intermediate approximation, we first note that the opinion recursion (2.2) can
be rewritten in matrix notation as

R(k) = AR(k−1) +W (k), (5.1)

where R(k) ∈ [−1, 1]n×` and W (k) ∈ [−1, 1]n×` are the matrices having (i, j)th components R
(k)
ij and W

(k)
ij ,

respectively, and A ∈ [0, 1]n×n the matrix satisfying

Aij = c · Cij , i 6= j, Aii = 1− c− d,

with Cij constructed according to (2.1) using the random unnormalized weighs {Bij : i, j ∈ Vn} (the use
of upper case is to remind the reader that these are random). Iterating (5.1) gives the explicit solution

R(k) =

k−1∑
t=0

AtW (k−t) +AkR(0).

Using the observation that A = cC + (1 − c − d)I, where C is the matrix having (i, j)th component Cij ,
and I is the identity matrix in Rn×n, we get

At = (cC + (1− c− d)I)t =

t∑
s=0

(
t

s

)
(1− c− d)t−scsCs =

t∑
s=0

as,tC
s, t ≥ 0,

and, therefore,

R(k) =
k−1∑
t=0

t∑
s=0

as,tC
sW (k−t) +

k∑
s=0

as,kC
sR(0), k ≥ 1. (5.2)

Now, construct the matrix M̃ ∈ Rn×n according to

M̃ij =
βJi,Jjκ(Jj , Ji)

n
(
βJi,1π

(n)
1 κ(1, Ji) + · · ·+ βJi,Kπ

(n)
K κ(K,Ji)

)1(i 6= j),
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and recall that βr,s = E[Bij |Ji = r, Jj = s], with M̃ij ≡ 0 if the denominator is zero. The intuition behind

this definition of M̃ is that it is the “approximate” conditional mean of C given the community labels Jn,

meaning that for i, j ∈ Vn, i 6= j, and n sufficiently large (so that the minimum in p
(n)
ij can be dropped),

we have

M̃ij =
βJi,Jjp

(n)
ij

n
(
π

(n)
1 βJi,1p

(n)
1i + · · ·+ π

(n)
K βJi,Kp

(n)
Ki

) =
En[Bij1(j → i)]

En [
∑n

r=1Bir1(r → i)]
.

Define W̆ = En
[
W (0)

]
, R̆ = En

[
R(0)

]
, and construct the new process {R̃(k) : k ≥ 0} defined by

R̃(0) = R(0),

R̃(k) =

k−1∑
t=0

(1− c− d)tW (k−t) + 1(k ≥ 2)

k−1∑
t=1

t∑
s=1

as,tM̃
sW̆ +

k∑
s=1

as,kM̃
sR̆+ (1− c− d)kR(0), k ≥ 1. (5.3)

Intuitively, R̃(k) replaces all neighbor contributions with their approximate means, i.e., every term of the
form CsX with s ≥ 1 and X a random matrix is replaced with M̃ sEn[X]. It is important to point out

that the rows of R̃(k), which we will denote {R̃(k)
i : i ∈ Vn}, become independent as a consequence. Our

first result computes a bound for En
[∥∥∥R(k) − R̃(k)

∥∥∥
∞

]
and maxi∈Vn En

[∥∥∥R(k)
i − R̃

(k)
i

∥∥∥
i

]
.

Theorem 5.1. For any k ≥ 1, we have

max
i∈Vn

En
[∥∥∥R(k)

i − R̃
(k)
i

∥∥∥
1

]
≤ 1(k ≥ 2)

k−1∑
t=1

t∑
s=1

as,t max
i∈Vn

En
[∥∥∥(CsW (0))i• − (M̃ sW̆ )i•

∥∥∥
1

]
+

k∑
s=1

as,k max
i∈Vn

En
[∥∥∥(CsR(0))i• − (M̃ sR̆)i•

∥∥∥
1

]
.

Furthermore, for h(X) = En
[∥∥∥(C − M̃)X

∥∥∥
∞

]
, we have

En
[∥∥∥R(k) − R̃(k)

∥∥∥
∞

]
≤ max

r≥1
h(M̃ rW̆ )

k−1∑
t=0

(1− d)t−1t+ En
[∥∥∥CW (0) − M̃W̆

∥∥∥
∞

] k−1∑
t=0

(1− d)t

+ max
r≥1

h(M̃ rR̆) k(1− d)k−1 + En
[∥∥∥CR(0) − M̃R̆

∥∥∥
∞

]
(1− d)k.

Proof. Recall that as,t =
(
t
s

)
(1− c− d)t−scs and note that for any i ∈ Vn we have∥∥∥R(k)

i − R̃
(k)
i

∥∥∥
1

=

∥∥∥∥∥1(k ≥ 2)
k−1∑
t=1

t∑
s=1

as,t

(
CsW (k−t) − M̃ sW̆

)
i•

+
k∑
s=1

as,k

(
CsR(0) − M̃ sR̆

)
i•

∥∥∥∥∥
1

≤ 1(k ≥ 2)

k−1∑
t=1

t∑
s=1

as,t

∥∥∥(CsW (k−t) − M̃ sW̆
)
i•

∥∥∥
1

+

k∑
s=1

as,k

∥∥∥(CsR(0) − M̃ sR̆
)
i•

∥∥∥
1
.
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To obtain the first statement of the theorem simply take expectations on both sides to get

max
i∈Vn

En
[∥∥∥R(k)

i − R̃
(k)
i

∥∥∥
1

]
≤ 1(k ≥ 2)

k−1∑
t=1

t∑
s=1

as,t max
i∈Vn

En
[∥∥∥(CsW (k−t) − M̃ sW̆

)
i•

∥∥∥
1

]
+

k∑
s=1

as,k max
i∈Vn

En
[∥∥∥(CsR(0) − M̃ sR̆

)
i•

∥∥∥
1

]
.

To continue to the second statement, note that from the properties of the norm ‖ · ‖∞, we obtain that∥∥∥R(k) − R̃(k)
∥∥∥
∞
≤ 1(k ≥ 2)

k−1∑
t=1

t∑
s=1

as,t

∥∥∥CsW (k−t) − M̃ sW̆
∥∥∥
∞

+
k∑
s=1

as,k

∥∥∥CsR(0) − M̃ sR̆
∥∥∥
∞
.

Furthermore, since for any matrices X, X̆ ∈ Rn×` and any s ≥ 1 we have

CsX − M̃ sX̆ = Cs−1(CX − M̃X̆) + (Cs−1 − M̃ s−1)M̃X̆

= Cs−1(CX − M̃X̆) +
s−1∑
r=1

Cs−r−1(C − M̃)M̃ rX̆,

then ∥∥∥CsX − M̃ sX̆
∥∥∥
∞
≤

s−1∑
r=1

∥∥∥Cs−r−1(C − M̃)M̃ rX̆
∥∥∥
∞

+
∥∥∥Cs−1(CX − M̃X̆)

∥∥∥
∞

≤
s−1∑
r=1

‖C‖s−r−1
∞

∥∥∥(C − M̃)M̃ rX̆
∥∥∥
∞

+ ‖C‖s−1
∞

∥∥∥CX − M̃X̆
∥∥∥
∞

=
s−1∑
r=1

∥∥∥(C − M̃)M̃ rX̆
∥∥∥
∞

+
∥∥∥CX − M̃X̆

∥∥∥
∞
,

where we used the fact that ‖C‖∞ = 1. We conclude that

En
[∥∥∥R(k) − R̃(k)

∥∥∥
∞

]
≤ 1(k ≥ 2)

k−1∑
t=1

t∑
s=1

as,tEn
[∥∥∥CsW (k−t) − M̃ sW̆

∥∥∥
∞

]
+

k∑
s=1

as,kEn
[∥∥∥CsR(0) − M̃ sR̆

∥∥∥
∞

]
≤ 1(k ≥ 2)

k−1∑
t=1

t∑
s=1

as,t

(
s−1∑
r=1

En
[∥∥∥(C − M̃)M̃ rW̆

∥∥∥
∞

]
+ En

[∥∥∥CW (k−t) − M̃W̆
∥∥∥
∞

])

+
k∑
s=1

as,k

(
s−1∑
r=1

En
[∥∥∥(C − M̃)M̃ rR̆

∥∥∥
∞

]
+ En

[∥∥∥CR(0) − M̃R̆
∥∥∥
∞

])

≤ max
r≥1

h(M̃ rW̆ )1(k ≥ 2)
k−1∑
t=1

t∑
s=1

as,t(s− 1) + En
[∥∥∥CW (0) − M̃W̆

∥∥∥
∞

]
1(k ≥ 2)

k−1∑
t=1

t∑
s=1

as,t
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+ max
r≥1

h(M̃ rR̆)

k∑
s=1

as,k(s− 1) + En
[∥∥∥CR(0) − M̃R̆

∥∥∥
∞

] k∑
s=1

as,k.

To compute the double sums more explicitly, let Bin(n, p) denote a binomial random variable with param-
eters (n, p), and note that for k ≥ 1,

k∑
t=1

t∑
s=1

as,ts =
k∑
t=1

t∑
s=1

(
t

s

)
(1− c− d)t−scss =

k∑
t=1

(1− d)tE[Bin(t, c/(1− d))] = c
k∑
t=1

(1− d)t−1t, (5.4)

and

k∑
t=1

t∑
s=1

as,t =

k∑
t=1

t∑
s=1

(
t

s

)
(1− c− d)t−scs =

k∑
t=1

(1− d)tP (Bin(t, c/(1− d)) ≥ 1)

=
k∑
t=1

(1− d)t
(
1− (1− c− d)t/(1− d)t

)
=

k∑
t=1

(
(1− d)t − (1− c− d)t

)
. (5.5)

Similarly, the single sums can be computed to be

k∑
s=1

as,ks =
k∑
s=1

(
k

s

)
(1− c− d)k−scss = (1− d)kE[Bin(k, c/(1− d))] = ck(1− d)k−1 (5.6)

and

k∑
s=1

as,k =

k∑
s=1

(
k

s

)
(1− c− d)k−scs = (1− d)kP (Bin(k, c/(1− d)) ≥ 1) = (1− d)k − (1− c− d)k. (5.7)

Consequently,

En
[∥∥∥R(k) − R̃(k)

∥∥∥
∞

]
≤ max

r≥1
h(M̃ rW̆ )1(k ≥ 2)

k−1∑
t=1

(1− d)t−1t

+ En
[∥∥∥CW (0) − M̃W̆

∥∥∥
∞

]
1(k ≥ 2)

k−1∑
t=1

(1− d)t+

+ max
r≥1

h(M̃ rR̆) k(1− d)k−1 + En
[∥∥∥CR(0) − M̃R̆

∥∥∥
∞

]
(1− d)k.

�

Once the intermediate approximation {R̃(k) : k ≥ 0} given by (5.3) is obtained, its connection to the final

approximation {R(k) : k ≥ 0} given by (3.2) becomes apparent, since for all s ≥ 1 we have

(M̃ sW̆ )i• ≈ (M sW̄ )Ji• and (M̃ sR̆)i• ≈ (M sR̄)Ji•,

for large n. The following result provides a bound for the norm between these two processes.
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Theorem 5.2. For any θn →∞,

sup
k≥0

∥∥∥R̃(k) −R(k)
∥∥∥
∞
≤ `c

d2
· En,

where En = max1≤r,s≤K

∣∣∣π(n)
s πr−πsπ(n)

r

π
(n)
r πs

∣∣∣.
Proof. Note that for any 1 ≤ j ≤ K,∥∥∥R̃(k) −R(k)

∥∥∥
∞

= max
1≤i≤n

∑̀
j=1

∣∣∣∣∣1(k ≥ 2)
k−1∑
t=1

t∑
s=1

as,t(M̃
sW̆ )ij +

k∑
s=1

as,k(M̃
sR̆)ij−

−1(k ≥ 2)
k−1∑
t=1

t∑
s=1

as,t(M
sW̄ )Jij −

k∑
s=1

as,k(MR̄)Jij

∣∣∣∣∣
= max

1≤i≤n

∑̀
j=1

∣∣∣∣∣1(k ≥ 2)
k−1∑
t=1

t∑
s=1

as,t

(
(M̃ sW̆ )ij − (M sW̄ )Jij

)
+

k∑
s=1

as,k

(
(M̃ sR̆)ij − (M sR̄)Jij

)∣∣∣∣∣
≤ 1(k ≥ 2)

k−1∑
t=1

t∑
s=1

as,t max
1≤i≤n

∑̀
j=1

∣∣∣(M̃ sW̆ )ij − (M sW̄ )Jij

∣∣∣+
k∑
s=1

as,k max
1≤i≤n

∑̀
j=1

∣∣∣(M̃ sR̆)ij − (M sR̄)Jij

∣∣∣ .
Note that M̃ ∈ Rn×n is such that all the rows Sr = {M̃i• : Ji = r} are equal to each other, all the columns

{M̃•j : Jj = r} are equal to each other, and the cardinality of the Sr is nπ
(n)
r , for 1 ≤ r ≤ K. Similarly, the

vector W̆•j ∈ Rn satisfies that all the components {W̆ij : Ji = r} are equal to each other and the order in

which the vertex labels appear is the same as the columns of M̃ . Define the matrix M̆ ∈ RK×K according
to

M̆rs =
βr,sπ

(n)
s κ(s, r)

βr,1π
(n)
1 κ(1, r) + · · ·+ βr,Kπ

(n)
K κ(K, r)

, 1 ≤ r, s ≤ K, (5.8)

with M̆rs ≡ 0 if the denominator is zero, and note that

M̆rs =
n∑
j=1

M̃ij1(Jj = s) for any i such that Ji = r.

It follows that for any i ∈ Vn,

(M̃W̆ )ij =

n∑
l=1

M̃ilW̆lj =

K∑
r=1

n∑
l=1

M̃ilW̆lj1(Jl = r) =

K∑
r=1

M̆Ji,rW̄rj = (M̆W̄ )Jij . (5.9)

Now suppose that (M̃ s−1W̆ )ij = (M̆ s−1W̄ )Jij for s ≥ 2, and note that

(M̃ sW̆ )ij =

n∑
l=1

M̃il(M̃
s−1W̆ )lj =

K∑
r=1

n∑
l=1

M̃il(M̆
s−1W̄ )Jlj1(Jl = r) =

K∑
r=1

M̆Jir(M̆
s−1W̄ )rj = (M̆ sW̄ )Jij ,
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therefore, by induction, we conclude that

(M̃ sW̆ )ij = (M̆ sW̄ )Jij for all s ≥ 1 and all i ∈ Vn.

The same arguments also yield (M̃ sR̆)ij = (M̆ sR̄)Jij for all s ≥ 1 and all i ∈ Vn. Hence,

max
1≤i≤n

∑̀
j=1

∣∣∣(M̃ sW̆ )ij − (M sW̄ )Jij

∣∣∣ = max
1≤i≤n

∑̀
j=1

∣∣∣(M̆ sW̄ )Jij − (M sW̄ )Jij

∣∣∣ = ‖(M̆ s −M s)W̄‖∞

and

max
1≤i≤n

∑̀
j=1

∣∣∣(M̃ sR̄)ij − (M sR̄)Jij

∣∣∣ = ‖(M̆ s −M s)R̄‖∞.

The first inequality now becomes∥∥∥R̃(k) −R(k)
∥∥∥
∞
≤ 1(k ≥ 2)

k−1∑
t=1

t∑
s=1

as,t‖(M̆ s −M s)W̄‖∞ +
k∑
s=1

as,k‖(M̆ s −M s)R̄‖∞

≤ 1(k ≥ 2)
k−1∑
t=1

t∑
s=1

as,t‖M̆ s −M s‖∞‖W̄‖∞ +
k∑
s=1

as,k‖M̆ s −M s‖∞‖R̄‖∞

≤ `
k∑
t=1

t∑
s=1

as,t‖M̆ s −M s‖∞,

where in the last step we used the observation that ‖W̄‖∞ ≤ ` and ‖R̄‖∞ ≤ `. For the remaining norm,
note that

xs := ‖M̆ s −M s‖∞ ≤ ‖M̆ s − M̆ s−1M‖∞ + ‖M̆ s−1M −M s‖∞
≤ ‖M̆‖s−1

∞ ‖M̆ −M‖∞ + ‖M̆ s−1 −M s−1‖∞‖M‖∞ ≤ ‖M̆ −M‖∞ + xs−1

≤ s‖M̆ −M‖∞,

since x0 = 0 and ‖M‖∞ = ‖M̆‖∞ = 1. Finally, note that for I the set of non-zero rows of M (same as the

non-zero rows of M̆), we have

‖M̆ −M‖∞ = max
r∈I

K∑
s=1

∣∣∣∣∣ βr,sπ
(n)
s κ(s, r)

βr,1π
(n)
1 κ(1, r) + · · ·+ βr,Kπ

(n)
K κ(K, r)

− βr,sπsκ(s, r)

βr,1π1κ(1, r) + · · ·+ βr,KπKκ(K, r)

∣∣∣∣∣
= max

r∈I

∑K
s=1 βr,sκ(s, r)

∣∣∣(π(n)
s π1 − πsπ(n)

1 )βr,1κ(1, r) + · · ·+ (π
(n)
s πK − πsπ(n)

K )βr,Kκ(K, r))
∣∣∣

(βr,1π
(n)
1 κ(1, r) + · · ·+ βr,Kπ

(n)
K κ(K, r))(βr,1π1κ(1, r) + · · ·+ βr,KπKκ(K, r))

= max
r∈I

∑K
s=1 βr,sπsκ(s, r)

∑K
l=1

∣∣∣∣π(n)
s πl−πsπ

(n)
l

π
(n)
l πs

∣∣∣∣βr,lπ(n)
l κ(l, r)∑K

m=1 βr,mπ
(n)
m κ(m, r)

∑K
n=1 βr,nπnκ(n, r)
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≤ max
1≤r,s≤K

∣∣∣∣∣π(n)
s πr − πsπ(n)

r

π
(n)
r πs

∣∣∣∣∣ = En.

Combining our estimates, we deduce∥∥∥R̃(k) −R(k)
∥∥∥
∞
≤ `En

k∑
t=1

t∑
s=1

as,ts = `c En
k∑
t=1

(1− d)t−1t ≤ `c En
∞∑
t=1

(1− d)t−1t ≤ `c

d2
· En,

where the last equality comes from (5.4). Taking the supremum over k completes the proof. �

The proof of Theorem 3.1 is based on the estimation in Theorem 5.1 of the expected norms

En
[∥∥∥(C − M̃)X̆

∥∥∥
∞

]
and En

[∥∥∥CX − M̃X̆
∥∥∥
∞

]
(5.10)

for X conditionally independent of C given Fn = σ (Yi : i ∈ Vn) and having mean X̆ = En[X], when
θn ≥ γ log n, and of the expected norms

max
i∈Vn

En
[∥∥∥(CsX)i• − (M̃ sX̆)i•

∥∥∥
1

]
(5.11)

for s ≥ 1, when θn/ log n→ 0 as n→∞. This is done in the next two sections.

5.1. The semi-sparse to dense regimes. When the edge density in the graph is sufficiently large, the
concentration of the matrix C around the matrix M̃ is very strong. It is worth pointing out that M̃ is
not the mean of C, but rather, its more tractable asymptotic mean. For the norm involving R(0), the
concentration occurs around its mean matrix R̄, and the strength of this concentration is determined by
the matrix M̃ . The main result in this section provides estimates for the two expected norms in (5.10).
Its proof relies on the following concentration inequality for Binomial or Poisson random sums, and its
consequence on ratios of random sums.

Proposition 5.1. Let {Y (r)
i : i ≥ 1, 1 ≤ r ≤ K} be independent random variables on [−H,H], with

{Y (r)
i : i ≥ 1} i.i.d. for each 1 ≤ r ≤ K, and E[(Y

(r)
1 )2] ≤ vr. Let {Nr : 1 ≤ r ≤ K} be independent

random variables on N, independent of {Y (r)
i : i ≥ 1, 1 ≤ r ≤ K}, and satisfying E[esNr ] ≤ eE[Nr](es−1) for

s ∈ R. Define Sr =
∑Nr

i=1 Y
(r)
i . Then, for any ε > 0,

P

(
K∑
r=1

(Sr − E[Sr]) > εµ

)
≤ exp

(
−(εµ)2

2ν
+H

(εµ)3

2ν2

)
,

where µ =
∑K

r=1E[Nr]E[|Y (r)
1 |] and ν =

∑K
r=1E[Nr]vr.

Proof. Start by conditioning on {Nr : 1 ≤ r ≤ K} and use Chernoff’s bound to obtain that for any θ > 0,

P

(
K∑
r=1

(Sr − E[Sr]) > εµ

)
= E

[
P

(
K∑
r=1

(Sr − E[Sr]) > εµ

∣∣∣∣∣N1, . . . , NK

)]

≤ E

[
e−θεµ

K∏
r=1

E
[
eθ(Sr−E[Sr])

∣∣∣Nr

]]
= e−θεµ

K∏
r=1

e−θE[Sr]E

[
E
[
eθY

(r)
1

]Nr]
.
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Using the third order Taylor approximation for eθx, we obtain

E[eθY
(r)
1 ] ≤ 1 + θE[Y

(r)
1 ] +

∞∑
k=2

θkE[|Y (r)
1 |k]

k!
≤ 1 + θE[Y

(r)
1 ] +

( ∞∑
k=2

θkHk−2

k!

)
E[(Y

(r)
1 )2]

≤ 1 + θE[Y
(r)

1 ] +
vr
H2

(eθH − θH − 1) =: 1 + λr(θ).

It follows from the assumption on the moment generating function of Nr and the observation E[Sr] =

E[Nr]E[Y
(r)

1 ], that

P

(
K∑
r=1

(Sr − E[Sr]) > εµ

)
≤ e−θεµ

K∏
r=1

e−θE[Sr]E
[
(1 + λr(θ))

Nr
]

= e−θεµ
K∏
r=1

e−θE[Sr]E
[
eNr log(1+λr(θ))

]
≤ e−θεµ

K∏
r=1

e−θE[Sr]+E[Nr](elog(1+λr(θ))−1) = e−θεµ+
∑K
r=1 E[Nr](λr(θ)−θE[Y

(r)
1 ])

= e−θεµ+ ν
H2 (eθH−θH−1).

Picking θ = 1
H log (1 +Hεµ/ν) ≥ εµ/ν − (Hε2µ2)/(2ν2), we get

P

(
K∑
r=1

(Sr − E[Sr]) > εµ

)
≤ e−θεµ+ ν

H
(εµ/ν−θ) ≤ e

−
(
εµ
ν
−Hε

2µ2

2ν2

)
(εµ+ν/H)+ εµ

H
= e−

ε2µ2

2ν
+Hε3µ3

2ν2 .

�

Next, we use Proposition 5.1 to bound the event that ratios of random sums are far from the ratios of their
means.

Lemma 5.1. Let {B(r)
i , X

(r)
i : i ≥ 1, 1 ≤ r ≤ K} be independent random variables, with B

(r)
i ∈ [0, H],

X
(r)
i ∈ [−1, 1], and such that {(B(r)

i , X
(r)
i ) : i ≥ 1} are i.i.d. for each 1 ≤ r ≤ K. Let {Nr : 1 ≤ r ≤ K}

be independent random variables on N, independent of the {(B(r)
i , X

(r)
i ) : i ≥ 1, 1 ≤ r ≤ K}, and satisfying

E[esNr ] ≤ eE[Nr](es−1) for s ∈ R. Define Sr =
∑Nr

i=1B
(r)
i and S̃r =

∑Nr
i=1X

(r)
i B

(r)
i . Then, for any ε > 0,

P

(∣∣∣∣∣ S̃1 + · · ·+ S̃K
S1 + · · ·+ SK

− E[S̃1] + · · ·+ E[S̃K ]

E[S1] + · · ·+ E[SK ]

∣∣∣∣∣ > ε

)
≤ 4exp

(
−(ε/2)2µ2

2ν
+
H(ε/2)3µ3

2ν2

)
,

where µ =
∑K

r=1E[Nr]E[B
(r)
1 ] and ν =

∑K
r=1E[Nr]E[(B

(r)
1 )2].

Proof. To start, note that since |S̃r| ≤ Sr for each r ∈ {1, . . . ,K}, then∣∣∣∣∣ S̃1 + · · ·+ S̃K
S1 + · · ·+ SK

− E[S̃1] + · · ·+ E[S̃K ]

E[S1] + · · ·+ E[SK ]

∣∣∣∣∣
=

1

(S1 + · · ·+ SK)E[S1 + · · ·+ SK ]

∣∣∣∣∣
K∑
r=1

K∑
t=1

E[Sr]S̃t −
K∑
r=1

K∑
t=1

SrE[S̃t]

∣∣∣∣∣
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≤ 1

(S1 + · · ·+ SK)µ

(∣∣∣∣∣
K∑
r=1

K∑
t=1

E[Sr]S̃t −
K∑
r=1

K∑
t=1

SrS̃t

∣∣∣∣∣+

∣∣∣∣∣
K∑
r=1

K∑
t=1

SrS̃t −
K∑
r=1

K∑
t=1

SrE[S̃t]

∣∣∣∣∣
)

=
1

(S1 + · · ·+ SK)µ

(∣∣∣∣∣
K∑
t=1

S̃t

∣∣∣∣∣
∣∣∣∣∣
K∑
r=1

(E[Sr]− Sr)

∣∣∣∣∣+
K∑
r=1

Sr

∣∣∣∣∣
K∑
t=1

(S̃t − E[S̃t])

∣∣∣∣∣
)

≤ 1

µ

(∣∣∣∣∣
K∑
r=1

(E[Sr]− Sr)

∣∣∣∣∣+

∣∣∣∣∣
K∑
t=1

(S̃t − E[S̃t])

∣∣∣∣∣
)
.

Next, define the events

F =

{∣∣∣∣∣
K∑
r=1

(Sr − E[Sr])

∣∣∣∣∣ > εµ/2

}
and G =

{∣∣∣∣∣
K∑
r=1

(S̃r − E[S̃r])

∣∣∣∣∣ > εµ/2

}
,

and use the union bound to obtain that

P

(∣∣∣∣∣ S̃1 + · · ·+ S̃K
S1 + · · ·+ SK

− E[S̃1] + · · ·+ E[S̃K ]

E[S1] + · · ·+ E[SK ]

∣∣∣∣∣ > ε

)
≤ P

(∣∣∣∣∣
K∑
r=1

(E[Sr]− Sr)

∣∣∣∣∣+

∣∣∣∣∣
K∑
t=1

(S̃t − E[S̃t])

∣∣∣∣∣ > εµ

)
≤ P (F c) + P (Gc).

Finally, let µ̃ =
∑K

r=1E[Nr]E[|X(r)
1 |]E[B

(r)
1 ], and use Proposition 5.1 with Y

(r)
i = B

(r)
i and Y

(r)
i = −B(r)

i
to obtain that

P (F c) ≤ 2exp

(
−(ε/2)2µ2

2ν
+
H(ε/2)3µ3

2ν2

)
,

and then again with Y
(r)
i = −X(r)

i B
(r)
i and Y

(r)
i = X

(r)
i B

(r)
i to get

P (Gc) ≤ 2exp

(
−(εµ/(2µ̃))2µ̃2

2ν
+
H(εµ/(2µ̃))3µ̃3

2ν2

)
= 2exp

(
−(ε/2)2µ2

2ν
+
H(ε/2)3µ3

2ν2

)
.

This completes the proof. �

Now, we are able to prove the main result of this section. Recall that βr,s = E[Bij |Ji = r, Jj = s],
vr,s = E[B2

ij |Ji = r, Jj = s] for 1 ≤ r, s ≤ K,

µ(n)
r =

K∑
s=1

βr,sπ
(n)
s κ(s, r) and ν(n)

r =
K∑
s=1

vr,sπ
(n)
s κ(s, r),

for 1 ≤ r ≤ K and large enough n, ∆n = max
r∈I

ν
(n)
r /(µ

(n)
r )2 and Λn = max

r∈I
µ

(n)
r /ν

(n)
r , where I is the set of

nonzero rows of M .

Theorem 5.3. Let X ∈ Rn×` be a random matrix conditionally independent of C given Fn and having
mean X̆ = En[X]. Furthermore, suppose X has conditionally independent rows {Xi : i ∈ Vn} given Fn
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and satisfies ‖Xi‖∞ ≤ 1 a.s., and for each 1 ≤ r ≤ K, its rows {Xi : Ji = r} are identically distributed.
Then, for θn ≥ (2HΛn/γ)2∆n log n and 0 < γ < 1/2, there exists a constant Γ′ <∞ such that

En
[∥∥∥CX − M̃X̆

∥∥∥
∞

]
≤ Γ′

√
log n

θn
,

En
[∥∥∥(C − M̃)X̆

∥∥∥
∞

]
≤ Γ′

√
log n

θn
.

Proof. To start, note that since C and M̃ have the same deterministically zero rows (if any), we can simply

ignore them throughout the proof. Now let I∗ denote the set of non-zero rows of M̃ , fix ε > 0, and define
the events

Fit =
{∣∣∣(CX)it − (M̃X̆)it

∣∣∣ ≤ 2ε
}
, i ∈ I∗, 1 ≤ t ≤ `.

Next, note that

En
[∥∥∥CX − M̃X̆

∥∥∥
∞

]
= En

[
max
i∈I∗

∑̀
t=1

∣∣∣(CX)it − (M̃X̆)it

∣∣∣]

≤ En

[
max
i∈I∗

∑̀
t=1

∣∣∣(CX)it − (M̃X̆)it

∣∣∣ 1 (Fit)

]

+ En

[
max
i∈I∗

∑̀
t=1

(
|(CX)it|+ |(M̃X̆)it|

)
1 (F cit)

]

≤ En

[
max
i∈I∗

∑̀
t=1

2ε1 (Fit)

]
+ En

[
max
i∈I∗

2
∑̀
t=1

1(F cit)

]

≤ 2`ε+ 2
∑
i∈I∗

En

[∑̀
t=1

1 (F cit)

]
,

where in the last step we used the observation that∑̀
t=1

|(CX)it|1(F cit) ≤
∑̀
t=1

n∑
j=1

Cij |Xjt|1(F cit) ≤
∑̀
t=1

‖Ci•‖11(F cit) ≤
∑̀
t=1

1(F cit),

and similarly,
∑`

t=1 |(M̃X̆)it|1(F cit) ≤
∑`

t=1 1(F cit). It follows that

En
[∥∥∥CX − M̃X̆

∥∥∥
∞

]
≤ 2ε`+ 2

∑
i∈I∗

∑̀
t=1

Pn (F cit) .

To bound Pn (F cit), start by noting that∣∣∣(CX)it − (M̃X̆)it

∣∣∣ =

∣∣∣∣∣∣
n∑
j=1

CijXjt −
n∑
j=1

M̃ijX̆jt

∣∣∣∣∣∣ =

∣∣∣∣∣
∑n

j=1XjtBij1(j → i)∑n
r=1Bir1(r → i)

−
∑n

j=1 X̆jtβJi,Jjp
(n)
ji∑n

r=1 βJi,Jrp
(n)
ri

∣∣∣∣∣ .
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Next, note that we can rewrite

n∑
j=1

XjtBij1(j → i) =

K∑
r=1

n∑
j=1

XjtBij1(j → i)1(Jj = r) =:

K∑
r=1

S
(t)
i,r

and
n∑
j=1

Bij1(j → i) =

K∑
r=1

n∑
j=1

Bij1(j → i)1(Jj = r) =:

K∑
r=1

Si,r.

Moreover, conditionally on Ji, we have that S
(t)
i,r
D
=
∑Ni,r

j=1 X
(t,r)
j B

(i,r)
j and Si,r

D
=
∑Ni,r

j=1 B
(i,r)
j , with Ni,r

a binomial with parameters (nπ
(n)
r , κ(r, Ji)θn/n), independent of the i.i.d. sequences {B(i,r)

j : j ≥ 1} and

{X(t,r)
j : j ≥ 1}, which satisfy B

(i,r)
j

D
= (Bij |Ji, Jj = r), X

(t,r)
j

D
= (Xjt|Jj = r), and x̄j = X̆jt for Jj = r. It

follows from Lemma 5.1 that

Pn (F cit) = P

∣∣∣∣∣∣S
(t)
i,1 + · · ·+ S

(t)
i,K

Si,1 + · · ·+ Si,K
−
E[S

(t)
i,1 ] + · · ·+ E[S

(t)
i,K ]

E[Si,1] + · · ·+ E[Si,K ]

∣∣∣∣∣∣ > 2ε


≤ 4exp

(
−
ε2(θnµ

(n)
Ji

)2

2θnν
(n)
Ji

+
Hε3(θnµ

(n)
Ji

)3

2(θnν
(n)
Ji

)2

)
= 4exp

(
−
ε2θn(µ

(n)
Ji

)2

2ν
(n)
Ji

(
1−

Hεµ
(n)
Ji

ν
(n)
Ji

))

where

µ
(n)
Ji

=

K∑
r=1

π(n)
r κ(r, Ji)βJi,r = θ−1

n

K∑
r=1

E[Ni,r]E[B
(i,r)
1 ]

ν
(n)
Ji

=
K∑
r=1

π(n)
r κ(r, Ji)vJi,r = θ−1

n

K∑
r=1

E[Ni,r]E[(B
(r)
1 )2].

Therefore,

En
[∥∥∥CX − M̃X̆

∥∥∥
∞

]
≤ 2`ε+ 8

∑
i∈I∗

∑̀
t=1

exp

(
−
ε2θn(µ

(n)
Ji

)2

2ν
(n)
Ji

(
1−

Hεµ
(n)
Ji

ν
(n)
Ji

))

= 2`ε+ 8`
∑
r∈I

nπ(n)
r exp

(
−ε

2θn(µ
(n)
r )2

2ν
(n)
r

(
1− Hεµ

(n)
r

ν
(n)
r

))

≤ 2`ε+ 8`
∑
r∈I

nπ(n)
r exp

(
−ε

2θn(µ
(n)
r )2

2ν
(n)
r

(1−HεΛn)

)

≤ 2`ε+ 8`n exp

(
−ε

2θn
2∆n

(1−HεΛn)

)
,
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where ∆n = maxr∈I ν
(n)
r /(µ

(n)
r )2 and Λn = maxr∈I µ

(n)
r /ν

(n)
r . Next, choose ε =

√
4∆n log n/θn to obtain

n exp

(
−ε

2θn
2∆n

(1−HεΛn)

)
= n exp

(
−2 log n

(
1− 2HΛn

√
∆n log n

θ
1/2
n

))

= exp

(
− log n

(
1− 4HΛn

√
∆n log n

θ
1/2
n

))
,

which in turn yields

En
[∥∥∥CX − M̃X̆

∥∥∥
∞

]
≤ 4`

√
∆n log n/θn + 8` exp

(
− log n

(
1− 4HΛn

√
∆n log n

θ
1/2
n

))
.

Since the second norm corresponds to the case when X is deterministic, the same argument also yields

En
[∥∥∥(C − M̃)X̆

∥∥∥
∞

]
≤ 4`

√
∆n log n/θn + 8` exp

(
− log n

(
1− 4HΛn

√
∆n log n

θ
1/2
n

))
.

To complete the proof, note that if (2HΛn/γ)2∆n log n ≤ θn ≤ (log n)3, then√
∆n log n/θn + exp

(
− log n

(
1− 4HΛn

√
∆n log n

θ
1/2
n

))

≤ ∆1/2
n

√
log n

θn
+ exp (− (1− 2γ) log n) = ∆1/2

n

√
log n

θn
+ n−1+2γ = O

(√
log n

θn

)
as n→∞, while for (log n)3 < θn ≤ n/κ∗, with κ∗ = max1≤r,s≤K κ(r, s),√

∆n log n/θn + exp

(
− log n

(
1− 4HΛn

√
∆n log n

θ
1/2
n

))

≤ ∆1/2
n

√
log n

θn
+ n−1e4HΛn

√
∆n = O

(√
log n

θn

)
as n→∞. The statement of the theorem now follows. �

We can now give the proof to the first part of Theorem 3.1.

Proof of Theorem 3.1. Suppose θn ≥ (6HΛn)2∆n log n. We will prove that

sup
k≥0

En
[∥∥∥R(k) −R(k)

∥∥∥
∞

]
= O

(√
log n

θn
+ En

)

as n→∞, where En = max1≤r,s≤K

∣∣∣π(n)
s πr−πsπ(n)

r

π
(n)
r πs

∣∣∣. To start, use the triangle inequality to obtain

sup
k≥0

En
[∥∥∥R(k) −R(k)

∥∥∥
∞

]
≤ sup

k≥0
En
[∥∥∥R(k) − R̃(k)

∥∥∥
∞

]
+ En

[
sup
k≥0

∥∥∥R̃(k) −R(k)
∥∥∥
∞

]
.
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Theorem 5.2 yields

sup
k≥0

∥∥∥R̃(k) −R(k)
∥∥∥
∞
≤ c`

d2
En.

For the remaining term, use Theorem 5.1 to obtain that

En
[∥∥∥R(k) − R̃(k)

∥∥∥
∞

]
≤ max

r≥1
h(M̃ rW̆ )

k−1∑
t=0

(1− d)t−1t+ En
[∥∥∥CW (0) − M̃W̆

∥∥∥
∞

] k−1∑
t=0

(1− d)t

+ max
r≥1

h(M̃ rR̆) k(1− d)k−1 + En
[∥∥∥CR(0) − M̃R̆

∥∥∥
∞

]
(1− d)k

where h(X) = En
[∥∥∥(C − M̃)X

∥∥∥
∞

]
. Now use Theorem 5.3 to obtain that, since

∥∥∥M̃ rW̆
∥∥∥
∞
≤ ` and∥∥∥M̃ rR̆

∥∥∥
∞
≤ ` for all r ≥ 0, then

max

{
max
r≥1

h(M̃ rW̆ ), max
r≥1

h(M̃ rR̆), En
[∥∥∥CW (0) − M̃W̆

∥∥∥
∞

]
, En

[∥∥∥CR(0) − M̃R̆
∥∥∥
∞

]}
≤ `Γ′

√
log n

θn
.

Therefore,

En
[∥∥∥R(k) − R̃(k)

∥∥∥
∞

]
≤ `Γ′

√
log n

θn

(
k−1∑
t=0

(1− d)t−1t+
k−1∑
t=0

(1− d)t + k(1− d)k−1 + (1− d)k

)
,

and since the supremum over k is finite, there exists some other constant Γ <∞ such that

sup
k≥0

(
En
[∥∥∥R(k) − R̃(k)

∥∥∥
∞

]
+
∥∥∥R̃(k) −R(k)

∥∥∥
∞

)
≤ Γ

(√
log n

θn
+ En

)
.

This completes the proof for the first part of the theorem. �

We now move to the density regime where log n/θn may not converge to zero. In that case, we can still

prove concentration of the opinion matrix R(k) to the mean-field limit R(k) as n → ∞, but in a weaker
mode of convergence.

5.2. The subcritical to sparse regimes. In this section we complete the proof of Theorem 3.1 by
analyzing the expected norms (5.11). When lim supn→∞(log n)/θn > 0, the number of neighbors is not

enough to provide a full concentration of the matrix C around its asymptotic mean M̃ , since up to an o(n)
number of vertices will not be sufficiently close to their limits. Instead of using the supremum norm as in
the denser case, we use an averaged l1-norm, which is what we typically use in sparse graphs where the
local limiting structure of the dSBM is what enables the analysis. The key observation in this section is
that for any matrix X ∈ Rn×`, (CsX)ij is a function of the inbound neighborhood of vertex i ∈ Vn of length

s, which is approximately equal to (M̃ sX)ij . In order for us to make this connection, we need to describe
the local behavior of neighborhoods in the marked graph Gn = (Vn, En; An), where An = {Yi : i ∈ Vn}
are the extended vertex attributes.
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5.2.1. Coupling with a multi-type Galton-Watson tree. Pick a vertex In, chosen uniformly at random from
the vertex set Vn. The idea behind local weak convergence is to couple the exploration of the inbound
neighborhood of In with the construction of a rooted graph, whose root ∅ corresponds to In. We point
out that in our setting, the local weak limit of the dSBM is a non locally-finite graph, so the coupling we
need is one between the exploration of the inbound neighborhood of In with a branching tree whose degree
distribution grows with n. We start by introducing some terminology for trees.

We enumerate nodes in a rooted tree using the Ulam-Harris notation, which contains the ancestry path
of any node all the way to the root. For that, let any node in generation k ≥ 1 of the tree have a label
of the form i = (i1, . . . , ik) ∈ Nk+, and define the concatenation operation (i, j) = (i1, . . . , ik, j) for a
node in generation k + 1. The root is always denoted by ∅, but is omitted from the label of any other
node; to simplify the notation, we omit the parentheses for nodes in the first generation. We denote by
U = {∅} ∪

⋃∞
k=1 Nk+ the set of all possible node labels. The generation of a node i ∈ U is denoted by |i|,

for i 6= ∅.
The local weak limit of a sparse dSBM with K communities is a marked K-type Galton-Watson tree.
Recall that our network is not a sparse graph, so instead we are using an intermediate coupling (see [40]
for a detailed description of the construction). In order to obtain a description of the coupled tree, we
start by reminding the reader that vertices in Gn have extended attributes:

Yi = (Ji,Qi,Bi) ∈ {1, . . . ,K} × [−1, 1]` × [0, H]n, (5.12)

and Fn = σ (Yi : i ∈ Vn). In the K-type Galton-Watson tree, each node i will have an attribute:

Âi =
(
Ĵi, Q̂i

)
∈ {1, . . . ,K} × [−1, 1]`,

and a full mark of the form:

X̂ i =
(
Ĵi, Q̂i, {N̂

(r)
i }

K
r=1, {B̂(i,s)}N̂i

s=1

)
∈ {1, . . . ,K} × [−1, 1]` × NK × [0, H]∞,

where Ĵi is the type of node i, N̂
(r)
i is the number of type r offspring that node i has, and N̂i = N̂

(1)
i +

· · ·+ N̂
(K)
i .

We will construct the tree conditionally on the community labels Jn = {Ji : i ∈ Vn}. The unmarked tree
will be denoted T =

⋃∞
k=0Ak ⊂ U , where Ak is the set of nodes in its kth generation, and each node i ∈ T

will have a type Ĵi. To start, set A0 = {∅} and choose the type of the root ∅ according to:

Pn
(
Ĵ∅ = r

)
=

1

n

n∑
i=1

1(Ji = r) = π(n)
r .

From here on, any node i ∈ Ak, will have an offspring vector (N̂
(1)
i , . . . , N̂

(K)
i ), conditionally independent

of everything else given its type, and having distribution:

Pn
(
N̂

(1)
i = n1, . . . , N̂

(K)
i = nK

∣∣ Ĵi = r
)

=
K∏
s=1

e−q
(n)
sr

(q
(n)
sr )ns

ns!
,

where q
(n)
sr = κ(s, r)π

(n)
s θn. In other words, given Ĵi = r, the numbers of offspring of each type s of a node

of type r are independent Poisson random variables with means q
(n)
sr , 1 ≤ s ≤ K. To prevent the labels
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from conveying any information, we usually permute the N̂i offspring uniformly at random, and then set

Ak+1 =
{

(i, j) : i ∈ Ak, 1 ≤ j ≤ N̂i

}
.

Note that the conditional distribution of Ĵ(i,j) for |i| = k, k ≥ 0, depends on Ĵi and is given by

Pn
(
Ĵ(i,j) = s

∣∣∣ Ĵi = r
)

= En

[
N̂

(s)
i 1(N̂i > 0)

N̂i

∣∣∣∣∣ Ĵi = r

]
=

q
(n)
sr∑K

t=1 q
(n)
tr

=
κ(s, r)π

(n)
s∑K

t=1 κ(t, r)π
(n)
t

.

Moreover, conditionally on Ĵi, the {Ĵ(i,j) : j ≥ 1} are independent of each other.

Now that the unmarked tree T =
⋃∞
k=0Ak has been constructed, we assign to each node i ∈ T a mark(

Q̂i, {B̂(i,s)}N̂i
s=1

)
. The internal belief vector Q̂i depends only on Ĵi and is distributed according to FĴi .

Finally, the unnormalized weights satisfy for x ∈ R,

Pn
(
B̂(i,j) ≤ x

∣∣∣ Ĵi, Ĵ(i,j)

)
= GĴi,Ĵ(i,j)

(x), (5.13)

independently of everything else.

Definition 5.1. Two simple vertex-marked directed graphs, G = (V,E; A ) and G′ = (V ′, E′; A ′), whose
vertices have marks ai, i ∈ V , and a′i, i ∈ V ′, respectively, are said to be isomorphic if there exists a
bijection ϑ : V → V ′ such that (i, j) ∈ E if, and only if, (ϑ(i), ϑ(j)) ∈ E′, for nodes i, j ∈ V , and for all
i ∈ V the vertex mark ai = a′ϑ(i). We write G ' G′ to express that the graphs G and G′ are isomorphic.

For each i ∈ Vn, the intermediate coupling will construct a marked tree T∅(i)(Ĵ)
D
= (T (Ĵ)|Ĵ∅ = Ji) using as

marks in Definition 5.1 the types, which correspond to the community labels in the dSBM (we do not need
the internal opinions nor the unnormalized weights for this purpose, since their distribution is determined
by the types). Note that the subscript ∅(i) emphasizes that the root of the tree corresponds to vertex i in

the graph. For any fixed s ≥ 0, let G(s)
i (J) denote the induced subgraph of Gn determined by the vertices

in Vn that have directed paths of length at most s connecting them to vertex i, including their community

labels, and let T (s)
∅(i)(Ĵ) denote the restriction of T∅(i)(Ĵ) to its first s generations. Then, using the same

type of intermediate coupling as in [35], one obtains the following theorem.

Theorem 5.4. For the dSBM under Assumption A, with θn ≤ (log n)b for some b > 0, and any fixed

k ≥ 0, there exists a sequence of marked K-type Galton-Watson trees {T∅(i)(Ĵ) : i ∈ Vn} such that

T∅(i)(Ĵ)
D
= (T (Ĵ)|Ĵ∅ = Ji) and

1

n

n∑
i=1

Pn
(
G(k)
i (J) 6' T (k)

∅(i)(Ĵ)
)

P−→ 0, n→∞.

Note that when the coupling holds for a vertex i up to generation s, i.e., G(s)
i (J) ' T (s)

∅(i)(Ĵ), we can copy the

internal belief vectors and the unnormalized weights from the graph, so Q̂i = Qϑ(i) and B̂(i,j) = Bϑ(i),ϑ((i,j)),
where ϑ is the bijection defining the isomorphism. When the coupling fails, we simply sample them
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independently according to FĴi and (5.13), respectively. Once we have the unnormalized weights, we

define

Ĉ(i,j) =
B̂(i,j)∑N̂i
s=1 B̂(i,s)

· 1

 N̂i∑
s=1

B̂(i,s) > 0

 .

On the tree, the weights {Ĉi : i ∈ T } are used to construct the weights

Π(i,j) = ΠiĈ(i,j), Π∅ = 1.

5.2.2. Proof of Theorem 3.1 for semi-sparse graphs. Our goal is to bound the norm

max
i∈Vn

En
[∥∥∥(CsX)i• − (M̃ sX̆)i•

∥∥∥
1

]
= max

i∈Vn

t∑
j=1

En
[∣∣∣(CsX)ij − (M̃ sX̆)ij

∣∣∣]
for X ∈ [−1, 1]n×` a random matrix, conditionally independent of C given Fn and having mean X̆ = En[X].

To simplify the notation, note that if we set X = X•j and x̄ = X̆•j = En[X], then

En
[∣∣∣(CsX)ij − (M̃ sX̆)ij

∣∣∣] = En
[∣∣∣(CsX)i − (M̃ sx̄)i

∣∣∣] ,
so it suffices to analyze expectations of this form. We start by defining for each i ∈ Vn and any s ≥ 1, the
event that the coupling with the K-type Galton-Watson tree holds:

Ds,i =
{
G(s)
i (J) ' T (s)

∅(i)(Ĵ)
}
.

Lemma 5.2. Let X = (X1, . . . , Xn)> ∈ [−1, 1]n be a random vector such that Xi has distribution HAi,
independently of everything else; let x̄ = (x̄1, . . . , x̄n)> = En[X] denote its mean. Furthermore, suppose
x̄i = xr for all i such that Ji = r, 1 ≤ r ≤ K. Then, for any i ∈ Vn and s ≥ 1,

En
[∣∣∣(CsX)i − (M̃ sx̄)i

∣∣∣] ≤ En

∣∣∣∣∣∣
∑
|i|=s

ΠiX̂i − (M̆x)Ji

∣∣∣∣∣∣
∣∣∣∣∣∣ Ĵ∅ = Ji

+ 2Pn
(
Dc
s,i

)
,

where M̆ is defined in (5.8), x = (x1, . . . , xK)>, the Πj are defined on the marked tree T (Ĵ), and X̂i is
distributed according to HÂi

, independently of everything else.

Proof. We start by considering one vertex i ∈ Vn and construct its coupled tree T∅(i)(Ĵ)
D
= (T (Ĵ)|Ĵ∅ = Ji).

Note that on the event Ds,i there is a unique path connecting vertex i to each of its neighbors at distance
s, and these paths are the same as those in the tree, so

(CsX)i =

n∑
j1=1

· · ·
n∑

js=1

Cij1Cj1j2 · · ·Cjs−1jsXjs =
∑
|i|=s

ΠiX̂i, (5.14)

with X̂i = Xϑ(i), with ϑ the bijection determining the event Ds,i. Since the distribution of Xϑ(i) depends

only on Aϑ(i) and Aϑ(i) = Âi, then (X̂i|Âi) is distributed according to HÂi
.
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The induction proof given within the proof of Theorem 5.2 shows that

(M̃ sx̄)i = (M̆x)Ji .

Consequently,

En
[∣∣∣(CsX)i − (M̃ sx̄)i

∣∣∣] = En
[∣∣∣(CsX)i − (M̃ sx̄)i

∣∣∣]
≤ En

[
1(Ds,i)

∣∣∣(CsX)i − (M̃ sx̄)i

∣∣∣]+ En
[
1(Dc

s,i)
(
|(CsX)i|+ |(M̃ sx̄)i|

)]
≤ En

∣∣∣∣∣∣
∑
|i|=s

ΠiX̂i − (M̆x)Ji

∣∣∣∣∣∣
∣∣∣∣∣∣ Ĵ∅ = Ji

+ 2Pn
(
Dc
s,i

)
,

where the weights Πi and the terminal values X̂i are defined on the marked tree T∅(i)(Ĵ), and we have used

the observation that ‖CsX‖∞ ≤ 1 and ‖M̃ sx̄‖∞ ≤ 1. �

Next, define the vector as := (as(1), . . . , as(K))> given by:

as(r) := En

∣∣∣∣∣∣
∑
|i|=s

Π̂iX̂i − (M̆ sx)r

∣∣∣∣∣∣
∣∣∣∣∣∣ Ĵ∅ = r

 . (5.15)

Before proving the main theorem of this section, we give a bound for ‖a1‖∞.

Lemma 5.3. For a1 defined according to (5.15), and provided θn →∞ as n→∞, there exists a constant

Γ′ <∞ that does not depend on the choice of {X̂i} such that

‖a1‖∞ ≤ Γ′θ−1/2
n .

Proof. Note that if the rth row of M̆ is zero, then a1(r) = 0, and since the non-zero rows of M̆ coincide
with those of M , it suffices to consider r ∈ I. For r ∈ I,

a1(r) = En

∣∣∣∣∣∣
N̂∅∑
i=1

ĈiX̂i − (M̆x)r

∣∣∣∣∣∣
∣∣∣∣∣∣ Ĵ∅ = r

 ,
and let

Sj :=

N̂∅∑
i=1

B̂iX̂i1(Ĵi = j) and S̃j :=

N̂∅∑
i=1

B̂iX̂i1(Ĵi = j),

so that
N̂∅∑
i=1

ĈiX̂i =

N̂∅∑
i=1

B̂i∑N̂∅
s=1 B̂s

X̂i =
S̃1 + · · ·+ S̃K
S1 + · · ·+ SK

.

Define the event

F =

{∣∣∣∣∣ S̃1 + · · ·+ S̃K
S1 + · · ·+ SK

− (M̆x)Ĵ∅

∣∣∣∣∣ ≤ 2/(3HΛn)

}
,
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and condition on Ĵ∅ to obtain that

En

∣∣∣∣∣∣
N̂∅∑
i=1

ĈiX̂i − (M̆x)r

∣∣∣∣∣∣
∣∣∣∣∣∣ Ĵ∅ = r


≤ En

1(F )

∣∣∣∣∣∣
N̂∅∑
i=1

ĈiX̂i − (M̆x)r

∣∣∣∣∣∣
∣∣∣∣∣∣ Ĵ∅ = r

+ En

1(F c)

 N̂∅∑
i=1

Ĉi|X̂i|+ |(M̆x)r|

∣∣∣∣∣∣ Ĵ∅ = r


=

∫ 2/(3HΛn)

0
Pn

∣∣∣∣∣∣
N̂∅∑
i=1

ĈiX̂i − (M̆x)r

∣∣∣∣∣∣ > t

∣∣∣∣∣∣ Ĵ∅ = r

 dt+ 2Pn
(
F c
∣∣∣Ĵ∅ = r

)
,

where we used the observation that
∑N̂∅

i=1 Ĉi|X̂i| ≤ 1 and |(M̆x)r| ≤ ‖M̆x‖∞ ≤ ‖M̆‖∞‖x‖∞ ≤ 1, and
therefore, the integrand is bounded by one.

Next, note that conditionally on Ĵ∅ = r, we have that S̃j
D
=
∑Nj

i=1B
(r,j)
i X

(j)
i , where Nj is a Poisson random

variable with mean q
(n)
jr = κ(j, r)π

(n)
j θn, and is independent of the i.i.d. sequences {B(r,j)

i : i ≥ 1} and

{X(j)
i : i ≥ 1}, with B

(r,j)
i

D
= (B̂i|Ĵ∅ = r, Ĵi = j) and X

(j)
i
D
= (X̂i|Ĵi = j). Similarly, Sj

D
=
∑Nr

i=1B
(r,j)
i , and

all the random variables {Sj , S̃j : 1 ≤ j ≤ K} are conditionally independent of each other given Ĵ∅. It
follows from Lemma 5.1 that for r ∈ I,

Pn

∣∣∣∣∣∣
N̂∅∑
i=1

ĈiX̂i − (M̆x)r

∣∣∣∣∣∣ > t

∣∣∣∣∣∣ Ĵ∅ = r

 ≤ 4 exp

(
−(t/2)2(θnµ

(n)
r )2

2θnν
(n)
r

+
H(t/2)3(θnµ

(n)
r )3

2(θnν
(n)
r )2

)

≤ 4 exp

(
−(t/2)2θn

2∆n
(1−HΛnt/2)

)
,

as in the proof of Theorem 5.3, and

Pn
(
F c
∣∣∣Ĵ∅ = r

)
≤ 4 exp

(
−(1/(3HΛn))2θn

2∆n
(1−HΛn/(3HΛn))

)
= 4 exp

(
− θn

27∆n(HΛn)2

)
.

Since the bounds do not depend on Ĵ∅, we obtain that

‖a1‖∞ ≤ 4

∫ 2/(3HΛn)

0
exp

(
−(t/2)2θn

2∆n
(1−HΛnt/2)

)
dt+ 8 exp

(
− θn

27∆n(HΛn)2

)
≤ 4

∫ 2/(3HΛn)

0
exp

(
−(t/2)2θn

3∆n

)
dt+ 8 exp

(
− θn

27∆n(HΛn)2

)
=

4√
θn/(6∆n)

∫ 2
√
θn/(6∆n)/(3HΛn)

0
e−z

2/2dz + 8 exp

(
− θn

27∆n(HΛn)2

)
≤ 8
√

3∆nπ√
θn

∫ ∞
0

e−z
2/2

√
2π

dz + 8 exp

(
− θn

27∆n(HΛn)2

)
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=
4
√

3∆nπ√
θn

+ 8 exp

(
− θn

27∆n(HΛn)2

)
= O

(
θ−1/2
n

)
as n→∞. Noting that the last estimates do not depend on the choice of the {X̂i} completes the proof. �

As a corollary to the previous lemma, we obtain the following bound for ‖as‖∞.

Corollary 5.1. For s ≥ 1 and as defined according to (5.15), and provided θn → ∞ as n → ∞, there

exists a constant Γ′ <∞ that does not depend on the choice of {X̂i} such that

‖as‖∞ ≤ Γ′sθ−1/2
n .

Proof. To derive a recursion for as, s ≥ 1, note that for each j ∈ {1, . . . ,K},

as(j) = En

∣∣∣∣∣∣
N̂∅∑
r=1

Ĉr
∑
|(r,i)|=s

Π̂(r,i)

Ĉr
X̂(r,i) −

N̂∅∑
r=1

Ĉr(M̆
s−1x)Ĵr +

N̂∅∑
r=1

Ĉr(M̆
s−1x)Ĵr − (M̆ sx)j

∣∣∣∣∣∣
∣∣∣∣∣∣ Ĵ∅ = j


≤ En

 N̂∅∑
r=1

Ĉr

∣∣∣∣∣∣
∑
|(r,i)|=s

Π̂(r,i)

Ĉr
X̂(r,i) − (M̆ s−1x)Ĵr

∣∣∣∣∣∣
∣∣∣∣∣∣ Ĵ∅ = j


+ En

∣∣∣∣∣∣
N̂∅∑
r=1

Ĉr(M̆
s−1x)Ĵr − (M̆ sx)j

∣∣∣∣∣∣
∣∣∣∣∣∣ Ĵ∅ = j


= En

 N̂∅∑
r=1

ĈrEn

∣∣∣∣∣∣
∑
|(r,i)|=s

Π̂(r,i)

Ĉr
X̂(r,i) − (M̆ s−1x)Ĵr

∣∣∣∣∣∣
∣∣∣∣∣∣ N̂∅, {Ĉr, Ĵr}N̂∅r=1

∣∣∣∣∣∣ Ĵ∅ = j


+ En

∣∣∣∣∣∣
K∑
l=1

N̂∅∑
r=1

Ĉr1(Ĵr = l)(M̆ s−1x)l −
K∑
l=1

M̆jl(M̆
s−1x)l

∣∣∣∣∣∣
∣∣∣∣∣∣ Ĵ∅ = j


= En

 N̂∅∑
r=1

Ĉras−1(Ĵr)

∣∣∣∣∣∣ Ĵ∅ = j

+ En

∣∣∣∣∣∣
K∑
l=1

(M̆ s−1x)l

 N̂∅∑
r=1

Ĉr1(Ĵr = l)− M̆jl

∣∣∣∣∣∣
∣∣∣∣∣∣ Ĵ∅ = j


≤ max

1≤j≤K
as−1(j)En

 N̂∅∑
r=1

Ĉr

∣∣∣∣∣∣ Ĵ∅ = j

+ En

∣∣∣∣∣∣
K∑
l=1

(M̆ s−1x)l

 N̂∅∑
r=1

Ĉr1(Ĵr = l)− M̆jl

∣∣∣∣∣∣
∣∣∣∣∣∣ Ĵ∅ = j

 .
To simplify the bound, recall that

∑N̂∅
r=1 Ĉr = 1. To bound the second expectation, let Ŷr = yl = (M̆ s−1x)l

for all r such that Ĵr = l, define y = (y1, . . . , yK)>, and note that

En

∣∣∣∣∣∣
K∑
l=1

(M̆ s−1x)l

 N̂∅∑
r=1

Ĉr1(Ĵr = l)− M̆jl

∣∣∣∣∣∣
∣∣∣∣∣∣ Ĵ∅ = j

 = En

∣∣∣∣∣∣
N̂∅∑
r=1

ĈrŶr − (M̆y)j

∣∣∣∣∣∣
∣∣∣∣∣∣ Ĵ∅ = j

 ,
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so by Lemma 5.3 we get

max
1≤j≤K

En

∣∣∣∣∣∣
N̂∅∑
r=1

ĈrŶr − (M̆y)j

∣∣∣∣∣∣
∣∣∣∣∣∣ Ĵ∅ = j

 ≤ Γ′sθ−1/2
n

for some constant Γ′ that does not depend on the {Ŷi}. Therefore,

‖as‖∞ ≤ ‖as−1‖∞ + Γ′θ−1/2
n .

Iterating the recursion gives

‖as‖∞ ≤ Γ′sθ−1/2
n .

�

We now state the counterpart of Theorem 5.3 for this regime.

Theorem 5.5. Let X = (X1, . . . , Xn)> ∈ [−1, 1]n be a random vector such that Xi has distribution HAi,
independently of everything else; let x̄ = (x̄1, . . . , x̄n)> = En[X] denote its mean. Furthermore, suppose
x̄i = xr for all i such that Ji = r, 1 ≤ r ≤ K. Then, there exists a constant Γ′ that does not depend on the
choice of X such that for any i ∈ Vn and s ≥ 1,

En
[∣∣∣(CsX)i − (M̃ sx̄)i

∣∣∣] ≤ Γ′s

θ
1/2
n

+ 2Pn
(
Dc
s,i

)
.

Proof. By Lemma 5.2 and Corollary 5.1, we have that

En
[∣∣∣(CsX)i − (M̃ sx̄)i

∣∣∣] ≤ En

∣∣∣∣∣∣
∑
|i|=s

ΠiX̂i − (M̆x)Ji

∣∣∣∣∣∣
∣∣∣∣∣∣ Ĵ∅ = Ji

+ 2Pn
(
Dc
s,i

)
≤ as(Ji) + 2Pn

(
Dc
s,i

)
≤ ‖as‖∞ + 2Pn

(
Dc
s,i

)
≤ Γ′sθ−1/2

n + 2Pn
(
Dc
s,i

)
.

�

We can now give the proof to the second part of Theorem 3.1.

Proof of Theorem 3.1. Suppose θn →∞ as n→∞, and recall that we need to prove that

sup
k≥0

max
i∈Vn

En
[∥∥∥R(k)

i −R(k)
i

∥∥∥
1

]
P−→ 0

as n→∞. Note that by Remark 3.1(a), it suffices to assume that θn ≤ (log n)b for some b > 1. To start,
note that by Theorem 5.1, we have that for any fixed k ≥ 0,

max
i∈Vn

En
[∥∥∥R(k)

i −R(k)
i

∥∥∥
1

]
≤ max

i∈Vn
En
[∥∥∥R(k)

i − R̃
(k)
i

∥∥∥
1

]
+ max

i∈Vn
En
[∥∥∥R̃(k)

i −R(k)
i

∥∥∥
1

]
≤ 1(k ≥ 2)

k−1∑
t=1

t∑
s=1

as,t max
i∈Vn

En
[∥∥∥(CsW (0))i• − (M̃ sW̆ )i•

∥∥∥
1

]
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+

k∑
s=1

as,k max
i∈Vn

En
[∥∥∥(CsR(0))i• − (M̃ sR̆)i•

∥∥∥
1

]
+ En

[∥∥∥R̃(k) −R(k)
∥∥∥
∞

]
.

Moreover, by Theorem 5.2,

En
[∥∥∥R̃(k) −R(k)

∥∥∥
∞

]
≤ En

[
sup
k≥0

∥∥∥R̃(k) −R(k)
∥∥∥
∞

]
≤ `c

d2
· En.

Now use Theorem 5.5 to obtain that

En
[∥∥∥(CsW (0))i• − (M̃ sW̆ )i•

∥∥∥
1

]
=
∑̀
j=1

En
[∥∥∥(CsW

(0)
•j )i − (M̃ sW̆•j)i

∥∥∥
1

]
≤ `

(
Γ′sθ−1/2

n + 2Pn(Dc
s,i)
)

and

En
[∥∥∥(CsR(0))i• − (M̃ sR̆)i•

∥∥∥
1

]
≤ `

(
Γ′sθ−1/2

n + 2Pn(Dc
s,i)
)
.

It follows that

max
i∈Vn

En
[∥∥∥R(k)

i −R(k)
i

∥∥∥
1

]
≤ 1(k ≥ 2)

k−1∑
t=1

t∑
s=1

as,t max
i∈Vn

`
(

Γ′sθ−1/2
n + 2Pn(Dc

s,i)
)

+
k∑
s=1

as,k max
i∈Vn

`
(

Γ′sθ−1/2
n + 2Pn(Dc

s,i)
)

+
`c

d2
· En

= `Γ′θ−1/2
n

k∑
t=1

t∑
s=1

as,ts+ 2

k∑
t=1

t∑
s=1

as,t max
i∈Vn

Pn(Dc
s,i) +

`c

d2
· En

= `Γ′θ−1/2
n c

k∑
t=1

(1− d)t−1t+ 2
k∑
t=1

t∑
s=1

as,t max
i∈Vn

Pn(Dc
s,i) +

`c

d2
· En,

where in the last equality we used (5.4). Since
∑k

t=1(1− d)t−1t ≤ d−2 for all k ≥ 0, and

k∑
t=1

t∑
s=1

as,t max
i∈Vn

Pn(Dc
s,i) =

k∑
s=1

max
i∈Vn

Pn(Dc
s,i)c

s
k∑
t=s

(
t

s

)
(1− c− d)t−s

=

k∑
s=1

max
i∈Vn

Pn(Dc
s,i)c

s(c+ d)−s−1
k−s∑
m=0

(
m+ s

m

)
(1− c− d)m(c+ d)s+1

≤
∞∑
s=1

max
i∈Vn

Pn(Dc
s,i)

cs

(c+ d)s+1
=

c

(c+ d)d
En
[
max
i∈Vn

Pn(Dc
T,i)

]
,

where T is a geometric random variable on {1, 2, . . . } with success probability p = d/(c+d), we have shown
that

sup
k≥0

max
i∈Vn

En
[∥∥∥R(k)

i −R(k)
i

∥∥∥
1

]
≤ `c

d2

(
Γ′θ−1/2

n + En
)

+
2c

(c+ d)d
En
[
max
i∈Vn

Pn(Dc
T,i)

]
.
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It only remains to show that maxi∈Vn Pn(Dc
T,i)

P−→ 0 as n → ∞ for any fixed T , since then the bounded

convergence theorem would complete the proof. To see this is the case, note that all vertices {i ∈ Vn : Ji =
r}, 1 ≤ r ≤ K, are exchangeable, so for any i ∈ Vn,

Pn(Dc
T,i) =

K∑
r=1

Pn(Dc
T,i)1(Ji = r) =

K∑
r=1

1

π
(n)
r n

n∑
m=1

Pn(Dc
T,m)1(Jm = r) =

1

n

n∑
m=1

Pn(Dc
T,m)

K∑
r=1

1(Jm = r)

π
(n)
r

,

and therefore, by Theorem 5.4 and Assumption A,

max
i∈Vn

Pn(Dc
T,i) ≤

1

n

n∑
m=1

Pn(Dc
T,m) ·

K∑
r=1

1

π
(n)
r

P−→ 0

as n→∞. This completes the proof. �

The last section of the paper contains the proofs of Theorems 3.2 and 3.3, which are a consequence of
Theorem 3.1.

5.3. Proofs of Theorems 3.2 and 3.3. We start by proving Theorem 3.2, which focuses on the trajec-
tories of the process {R(k) : k ≥ 0}.

Proof of Theorem 3.2. Fix k ≥ 0 and recall that Vk,i ∈ [−1, 1]`×(k+1) is the matrix having jth column

(Vk,i)•j = R
(j−1)
i , and Vk ∈ [−1, 1]`×(k+1) is the matrix having jth column (Vk)•j = R(j−1)

∅ . Assume

f : [−1, 1]`×(k+1) → R is bounded and continuous with respect to ‖·‖1 (the induced operator norm) . Since
f is continuous on a compact set, it is also uniformly continuous, so for every ε > 0 there exists a δ > 0
such that

|f(X)− f(Y )| < ε whenever ‖X − Y ‖1 < δ.

Let Vk,i ∈ [−1, 1]`×(k+1) denote the matrix having jth column (Vk,i)•j = R(j−1)
i , and let

f∗ = max
X∈[−1,1]`×(k+1)

|f(X)|.

It follows that for any 1 ≤ r ≤ K,

1

n

n∑
i=1

|f (Vk,i)− f (Vk,i)| 1(Ji = r)

≤ ε · 1

n

n∑
i=1

1 (‖Vk,i − Vk,i‖1 < δ) + 2f∗ · 1

n

n∑
i=1

1 (‖Vk,i − Vk,i‖1 ≥ δ)

≤ ε+
2f∗

δ
· 1

n

n∑
i=1

‖Vk,i − Vk,i‖1

= ε+
2f∗

δ
· 1

n

n∑
i=1

max
0≤m≤k

∥∥∥R(m)
i −R(m)

i

∥∥∥
1

≤ ε+
2f∗

δ
· 1

n

k∑
m=0

n∑
i=1

∥∥∥R(m)
i −R(m)

i

∥∥∥
1
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Take expectations on both sides to obtain

En

[
1

n

n∑
i=1

|f (Vk,i)− f (Vk,i)| 1(Ji = r)

]
≤ ε+

2f∗

δ
· 1

n

k∑
m=0

n∑
i=1

En
[∥∥∥R(m)

i −R(m)
i

∥∥∥
1

]
≤ ε+

2f∗

δ
·

k∑
m=0

max
i∈Vn

En
[∥∥∥R(m)

i −R(m)
i

∥∥∥
1

]
≤ ε+

2(k + 1)f∗

δ
· sup
m≥0

max
i∈Vn

En
[∥∥∥R(m)

i −R(m)
i

∥∥∥
1

]
.

From Theorem 3.1, we have that supm≥0 maxi∈Vn En
[∥∥∥R(m)

i −R(m)
i

∥∥∥
1

]
P−→ 0 as n → ∞. The bounded

convergence theorem then gives

lim
n→∞

E

[
1

n

n∑
i=1

|f (Vk,i)− f (Vk,i)| 1(Ji = r)

]
≤ ε+2(k + 1)f∗

δ
· lim
n→∞

E

[
sup
m≥0

max
i∈Vn

En
[∥∥∥R(m)

i −R(m)
i

∥∥∥
1

]]
= ε,

which in turn implies that

1

n

n∑
i=1

|f (Vk,i)− f (Vk,i)| 1(Ji = r)
P−→ 0, n→∞.

Moreover, Kolmogorov’s strong law of large numbers gives∣∣∣∣∣ 1n
n∑
i=1

(f(Vk,i)1(Ji = r)− E [f (Vk,i) 1(Ji = r)])

∣∣∣∣∣→ 0 a.s.

as n→∞. Since

E[f(Vk,i)1(Ji = r)] = E[f(Vk,i)|Ji = r]E[π(n)
r ] = E[f(Vk)|J∅ = r]E[π(n)

r ] = E[f(Vk)1(J∅ = r)]E[π(n)
r ]/πr,

we have shown that∣∣∣∣∣ 1n
n∑
i=1

f(Vk,i)1(Ji = r)− E [f (Vk) 1(J∅ = r)]

∣∣∣∣∣
≤ 1

n

n∑
i=1

|f (Vk,i)− f (Vk,i)| 1(Ji = r) +

∣∣∣∣∣ 1n
n∑
i=1

f(Vk,i)1(Ji = r)− E [f (Vk) 1(J∅ = r)]

∣∣∣∣∣
≤ 1

n

n∑
i=1

|f (Vk,i)− f (Vk,i)| 1(Ji = r) +

∣∣∣∣∣ 1n
n∑
i=1

(f(Vk,i)1(Ji = r)− E [f (Vk,i) 1(Ji = r)])

∣∣∣∣∣
+ |E[f(Vk)1(J∅ = r)]|

∣∣∣∣∣E[π
(n)
r ]

πr
− 1

∣∣∣∣∣ P−→ ε

as n→∞. Since ε > 0 was arbitrary, the first statement of the theorem follows.
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For the second statement, let {f1, . . . , fm} be bounded and continuous (with respect to ‖ · ‖1) functions on

[−1, 1]`×(k+1). Recall that we may assume that the functions are uniformly continuous. Now note that

E
[
fj (Vk)| J∅ = Jij

]
= En

[
fj
(
Vk,ij

)]
,

and since the {Vk,i : i ∈ Vn} are conditionally independent given the community labels Jn, then∣∣∣∣∣∣En
 m∏
j=1

fj
(
Vk,ij

)− m∏
j=1

E
[
fj (Vk)| J∅ = Jij

]∣∣∣∣∣∣ =

∣∣∣∣∣∣En
 m∏
j=1

fj
(
Vk,ij

)− En

 m∏
j=1

fj
(
Vk,ij

)∣∣∣∣∣∣
≤ En

∣∣∣∣∣∣
m∏
j=1

fj
(
Vk,ij

)
−

m∏
j=1

fj
(
Vk,ij

)∣∣∣∣∣∣


≤
m∏
j=1

f∗j

m∑
j=1

En
[∣∣fj (Vk,ij)− fj (Vk,ij)∣∣] ,

where f∗j = maxX∈[−1,1]`×(k+1) |fj(X)|, and we have used the inequality∣∣∣∣∣
m∏
i=1

xi −
m∏
i=1

yi

∣∣∣∣∣ ≤
m∏
i=1

(|xi| ∨ |yi|)
m∑
i=1

|xi − yi|.

To complete the proof, note that the random variables {|fj (Vk,t)− fj (Vk,t)| : Jt = r} are exchangeable, so
if Jij = rj , then

En
[∣∣fj (Vk,ij)− fj (Vk,ij)∣∣] =

1

nπ
(n)
rj

∑
t:Jt=rj

En [|fj (Vk,t)− fj (Vk,t)|]

=
1

π
(n)
rj

En

[
1

n

n∑
t=1

|fj (Vk,t)− fj (Vk,t)| 1(Jt = rj)

]
.

Now apply the same arguments used in the first part of the theorem to obtain that for any ε > 0 there
exists a δ > 0 such that

En
[∣∣fj (Vk,ij)− fj (Vk,ij)∣∣] ≤ 1

π
(n)
rj

(
ε+

2(k + 1)f∗j
δ

sup
m≥0

max
i∈Vn

En
[∥∥∥R(m)

i −R(m)
i

∥∥∥
1

])
.

We conclude that∣∣∣∣∣∣En
 m∏
j=1

fj
(
Vk,ij

)− m∏
j=1

E
[
fj (Vk)| J∅ = Jij

]∣∣∣∣∣∣
≤

m∏
j=1

f∗j

m∑
j=1

1

π
(n)
rj

(
ε+

2(k + 1)f∗j
δ

sup
m≥0

max
i∈Vn

En
[∥∥∥R(m)

i −R(m)
i

∥∥∥
1

])
P−→

m∏
j=1

f∗j

m∑
j=1

ε

πrj

as n→∞. Taking ε ↓ 0 completes the proof. �

We now prove Theorem 3.3, which refers to the stationary behavior of the process {R(k) : k ≥ 0}.
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Proof of Theorem 3.3. We will start by constructing a coupling of two matrices, R ∈ [−1, 1]n×` and R ∈
[−1, 1]n×`, the first one with rows Rj• = Rj and the second one with rows Rj• = Rj , as well as of the

random variable J∅, such that R has the stationary distribution of {R(k) : k ≥ 0},

Ri =
∞∑
t=0

(1− c− d)tW
(t)
i +

∞∑
t=1

t∑
s=1

as,t(M
sW̄ )Ji , i ∈ Vn,

and

max
i∈Vn

En [‖Ri −Ri‖1]→ 0, n→∞.

Note that exactly the same arguments used in the proof of Theorem 3.2 (set k = 0) will then yield

1

n

n∑
i=1

f(Ri)1(Ji = r)
P−→ E[f(R∅)1(J∅ = r)] and En

 m∏
j=1

fj(Rij )

 P−→
m∏
j=1

E[fj(R∅)|J∅ = Jij ],

as n→∞. Hence, we only need to exhibit the coupling.

Define {B(k) : k ≥ 0} ⊂ [−1, 1]n×` to be the process defined according to

B(k) =
k−1∑
t=0

AtW (t),

and let B =
∑∞

t=0A
tW (t). To see that B is well-defined, recall that ‖A‖∞ = 1− d < 1, and therefore,∥∥∥B −B(k)
∥∥∥
∞

=

∥∥∥∥∥
∞∑
t=k

AtW (t)

∥∥∥∥∥
∞

≤
∞∑
t=k

‖A‖t∞‖W (t)‖∞ ≤ `
∞∑
t=k

(1− d)t = `(1− d)k/d→ 0,

as k →∞, which yields B = limk→∞B
(k).

Going back to the original opinion recursion (5.1), note that it satisfies

R(k) =
k−1∑
r=0

AtW (k−t) +AkR(0) D= B(k) +AkR(0),

from where we obtain

R(k) ⇒ B, k →∞.

It follows that B
D
= R. The coupling we need is given by (B,R). It remains to show that

max
i∈Vn

En [‖Bi −Ri‖1]→ 0, n→∞,

where Bi is the ith row of B.

To this end, define the matrix B(k) ∈ [−1, 1]n×` having rows (B(k))i• = B(k)
i given by

B(k)
i =

k−1∑
t=0

(1− c− d)tW
(t)
i + 1(k ≥ 2)

k−1∑
t=1

t∑
s=1

as,t(M
sW̄ )Ji .
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Next, note that for any k ≥ 1 and any i ∈ Vn,

‖Bi −Ri‖1 ≤
∥∥∥Bi −B

(k)
i

∥∥∥
1

+
∥∥∥B(k)

i −B(k)
i

∥∥∥
1

+
∥∥∥B(k)

i −Ri

∥∥∥
1

≤ ‖B −B(k)‖∞ +
∥∥∥B(k)

i −B(k)
i

∥∥∥
1

+ ‖B(k) −R‖∞.

We have already computed
∥∥B −B(k)

∥∥
∞ ≤ `(1− d)k/d, and the last norm can be computed as follows:∥∥∥B(k) −R

∥∥∥
∞
≤
∞∑
t=k

(1− c− d)t‖W (t)‖∞ +
∞∑
t=k

t∑
s=1

as,t
∥∥M sW̄

∥∥
∞

≤ `
∞∑
t=k

(1− c− d)t + `

∞∑
t=k

t∑
s=1

as,t = `

∞∑
t=k

(1− c− d)t + `

∞∑
t=k

t∑
s=1

(
t

s

)
(1− c− d)t−scs

= `

∞∑
t=k

(1− c− d)t + `

∞∑
t=k

((1− d)t − (1− c− d)t) = `

∞∑
t=k

(1− d)t = `(1− d)k/d,

where in the second inequality we used the observation that ‖W (t)‖∞ ≤ ` and ‖M sW̄‖∞ ≤ `.
We have thus shown that for any i ∈ Vn and any k ≥ 0,

‖Bi −Ri‖1 ≤
∥∥∥B(k)

i −B(k)
i

∥∥∥
1

+ 2`(1− d)k/d.

Taking expectations on both sides, followed by the maximum over i, we get

max
i∈Vn

En [‖Bi −Ri‖1] ≤ 2`(1− d)k/d+ sup
m≥0

max
i∈Vn

En
[∥∥∥B(m)

i −B(m)
i

∥∥∥
1

]
. (5.16)

Finally, note that by Theorem 3.1,

sup
m≥0

max
i∈Vn

En
[∥∥∥B(m)

i −B(m)
i

∥∥∥
1

]
= sup

m≥0
max
i∈Vn

En
[∥∥∥R(m)

i −R(m)
i

∥∥∥
1

]
P−→ 0, n→∞.

Taking k →∞ in (5.16) completes the proof. �
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